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KEY WORDS Abstract  The global pharmaceutical drug delivery market is forecasted to grow to USD 2546.0 billion
by 2029. The expanding pharmaceutical market urgently needs a more efficient drug research and devel-
opment paradigm. Artificial intelligence (Al) is revolutionizing drug delivery by offering alternatives to
traditional trial-and-error experimental approaches. This review systematically traces the technological
evolution from early simple models to current advanced Al algorithms in various applications, ranging
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ward Al-driven drug formulation development.

This article is part of a special issue entitled: Hot Topic Revs in Drug Delivery published in Acta Pharmaceutica Sinica B.
*Corresponding author.
E-mail address: defangouyang@um.edu.mo (Defang Ouyang).
TThese authors made equal contributions to this work.
Peer review under the responsibility of Chinese Pharmaceutical Association and Institute of Materia Medica, Chinese Academy of Medical Sciences.

https://doi.org/10.1016/j.apsb.2025.09.022
2211-3835 © 2025 The Authors. Published by Elsevier B.V. on behalf of Chinese Pharmaceutical Association and Institute of Materia Medica, Chinese
Academy of Medical Sciences. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Please cite this article as: Wu Yiyang et al., Artificial intelligence for drug delivery: Yesterday, today and tomorrow, Acta Pharmaceutica Sinica B, https://
doi.org/10.1016/j.apsb.2025.09.022



http://creativecommons.org/licenses/by-nc-nd/4.0/
Delta:1_given-name
Delta:1_surname
Delta:1_given-name
Delta:1_surname
Delta:1_given-name
Delta:1_surname
mailto:defangouyang@um.edu.mo
https://doi.org/10.1016/j.apsb.2025.09.022
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://www.elsevier.com/locate/apsb
http://www.sciencedirect.com
https://doi.org/10.1016/j.apsb.2025.09.022

Yiyang Wu et al.

© 2025 The Authors. Published by Elsevier B.V. on behalf of Chinese Pharmaceutical Association and
Institute of Materia Medica, Chinese Academy of Medical Sciences. This is an open access article under
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Drug delivery is a critical step in transforming active pharma-
ceutical ingredients (APIs) into clinically applicable dosage
forms, which helps to optimize the pharmacokinetics (PK) and
pharmacodynamics (PD) properties of drugs'. As the difficulties
and cost of producing new molecular entities (NMEs) continue to
increase’, the importance and promise of drug delivery continue to
grow. The global pharmaceutical drug delivery market is fore-
casted to grow from USD 1949.4 billion in 2024 to USD 2546.0
billion by 2029, expanding at a compound annual growth rate
(CAGR) of 5.5%".

Modern drug delivery technology has evolved significantly
over the last seven decades since SmithKline successfully intro-
duced the first 12-h controlled-release formulation using
Spansule® technology in 1952°. The evolution can be observed in
three key dimensions: First, therapeutic agents have evolved from
traditional small-molecule APIs to include biomolecules such as
peptides, proteins, and nucleic acids, as well as cell therapies.
Second, delivery systems have diversified, from conventional
tablets, capsules, and injections to advanced delivery systems such
as microspheres, liposomes, and nanoparticles. Third, delivery
goals encompass not only optimizing the controlled drug release
but also incorporating the requirements of target delivery and
personalized delivery.

The principle of drug delivery is multi-task optimization from
a high-dimensional space based on material attributes and process
parameters’, with an estimated formulation design space between
10% and 10*°. However, the drug delivery paradigm largely de-
pends on traditional trial-and-error experimental approaches. The
inefficient methodology relies heavily on researchers’ experience
and intuition to explore a minute fraction of a vast design space,
resulting in significantly prolonged development timelines and
huge expenses. From 2010 to 2019, drug development averaged
8.7 years from Investigational New Drug (IND) filing to New
Drug Application (NDA) approval’. The mean cost to develop a
new drug was estimated at $879.3 million (2018 dollars)g.
Furthermore, while the pharmaceutical industry has evolved to
accumulate a wealth of valuable data, traditional research and
development (R&D) methods lack effective tools to leverage it
fully, potentially overlooking critical information. Given these
challenges, more cost-effective development strategies are ur-
gently required to accelerate drug R&D processes.

Artificial intelligence (AI), which refers to the simulation of
human intelligence by machines that can learn from existing data
and adapt to new inputs, has significantly developed since its
origin in the 1950s. Although it experienced several downturns, Al
has ushered in an explosive research boom since the AlexNet
model won the ImageNet competition in 2012°. Powered by the
advances and the convergence of big data, advanced algorithms,
and computing resources, Al has achieved remarkable success
across various fields. The 2024 Nobel Prize in Physics and
Chemistry was awarded for Al-related work, highlighting AI’s
profound impact on science'’. Attracted by the immense potential
of Al techniques, more and more pharmaceutical companies are
setting up divisions involving AI''. The major technology

companies such as Google and Microsoft, along with some Al-
focused startups, are also leveraging their expertise to inten-
sively pursue opportunities in biomedical fields'>. The U.S. Food
and Drug Administration (FDA) has further validated this tech-
nological transformation by recognizing and supporting Al’s role
in drug discovery and development'*.

In recent years, there has been a dramatic growth in interest in
the transformative potential of Al in drug delivery research. Fig. 1
shows the publication of Al applications in drug delivery from
2000 to 2024 based on the Web of Science (WOS) database.
Before 2018, publications related to Al technologies remained
few, but subsequently showed a striking upward trend, demon-
strating exponential growth over the following years and
exceeding 500 publications in 2024. Table 1 presents the rankings
of the top 10 countries, affiliations with departments, journals, and
hot topics in Al for drug delivery research based on publication
output. Various Al techniques have been successfully applied to
predict drug-excipient interactions'*'>, optimize formulations for
various dosage forms'®!'”, predict critical process parameters'®,
and efficiently screen delivery materials'®.

To address the growing importance of Al in drug delivery, this
review systematically summarizes the evolution of Al applications
in drug delivery, illustrating how Al is transforming the traditional
research paradigm (Fig. 2). As Al applications in this field
continue to expand rapidly, establishing robust methodological
standards becomes crucial for ensuring reproducibility and
enabling effective comparison of different Al techniques. This
review proposes comprehensive guidelines to address this need,
including a “Rule of Five” (Ro5) principle for developing reliable
Al models in formulation prediction. Beyond these practical
guidelines, this review further explores emerging trends and future
directions, including the utilization of large language models,
opportunities for multidisciplinary collaboration, talent develop-
ment, and culture transformation. By providing both practical
methodological guidance and forward-looking perspectives, this
review is a valuable starting point for pharmaceutical researchers
seeking to incorporate advanced Al techniques into their research.

2. Early stage: initial applications of artificial intelligence
before 2018

The applications of Al in drug delivery can be traced back to the
early 1970s°°. Over the following decades, researchers gradually
explored AI’s potential in pharmaceutical formulation develop-
ment, which laid the ground for future development. This section
provides an overview of these early applications, while
Table 22°7°° summarizes these efforts, highlighting how various
computational tools were applied to different drug delivery sys-
tems during this formative stage.

2.1.  Statistical models

Pharmaceutical research and development often revolve around
solving optimization problems. The need for efficiency in phar-
maceutical development drove the transition from empirical

doi.org/10.1016/j.apsb.2025.09.022

Please cite this article as: Wu Yiyang et al., Artificial intelligence for drug delivery: Yesterday, today and tomorrow, Acta Pharmaceutica Sinica B, https://



http://creativecommons.org/licenses/by-nc-nd/4.0/

Artificial intelligence for drug delivery

600 -

500 -

400 1

300 -

200 A

Number of publications

100

Annual publication trends in Web of Science (2000-2024)

IQD"\I%
o S O O
S o

NI

>

Year

Figure 1  The bar chart illustrates the temporal evolution of publication counts indexed in Web of Science from 2000 to 2024 (accessed January
4, 2025) using the following keywords setting: ALL = (“artificial intelligence” OR “machine learning” OR “deep learning” OR “neural network”
OR “expert system”) AND ALL =(“drug formulation” OR “pharmaceutical formulation” OR “drug delivery” OR “pharmaceutics”).

Table 1  Rankings of the top 10 countries, affiliations with departments, journals, and hot topics in Al-related pharmaceutics publications
from the WOS database (based on the same search keyword setting as Fig. 1).

Rank® Country Affiliation with the Journal Hot topic
department

1 USA (448) Institute of Chinese medical Pharmaceutics (167) Solid dispersion (274)
Science, University of Macau
(23)

2 China (431) Faculty of Pharmacy, International Journal of Gene delivery (103)
University of Belgrade (17) Pharmaceutics (158)

3 India (222) School of Engineering, Molecular Pharmaceutics Stratum corneum (63)
Massachusetts Institute of (121)
Technology (16)

4 England (164) Faculty of Pharmacy, King Advanced Drug Delivery Protein folding (41)
Abdulaziz University (15) Reviews (46)

5 Iran (121) College of Pharmacy, The Journal of Drug Delivery Hydrogels (32)
University of Texas at Austin Science and Technology (45)
(14)

6 Saudi Arabia (115) Faculty of Engineering, European Journal of Exosomes (28)

University of Waterloo (14)

7 Germany (96) Faculty of Science,
University of Waterloo (14)

8 South Korea (91) College of Pharmacy, King
Saud University (13)

9 Spain (88) College of Design and

Engineering, National
University of Singapore (13)

10 Canada (74) School of Pharmacy, Tehran
University of medical
Sciences (13)

Pharmaceutics and
Biopharmaceutics (42)

Journal of Controlled Release Gene expression data (26)
(30)

Journal of molecular Liquids Dry powder inhaler (25)
(20)

Scientific Reports (20) Silver nanoparticles (25)
Advanced materials (14) Supercritical carbon

dioxide (23)

“The rankings of countries, affiliations with departments, journals, and hot topics are independent of each other and there is no direct corre-
spondence across columns. The numbers in parentheses indicate the publication count for each entry.

practices to systematic approaches in drug delivery. Statistical
models provided researchers with tools to identify relationships
between formulation variables and outcomes.

A pioneering study conducted in 1973°° exemplified the early
adoption of statistical models in drug delivery, employing factorial

design and regression analysis to optimize tablet formulations. This
study used a dataset of 27 samples with five variables as inputs,
including diluent ratio, compression force, disintegrant levels,
blinder level, and lubricant level. Through regression analysis,
second-order polynomial predictive equations were derived and
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Figure 2  Evolution of computational methods in drug delivery.

Table 2  Early representative computational applications in drug delivery.

Year Computational Dosage form Dataset Objective Ref.

method

1973 Factorial design Tablet 27 data (1 API and 1 Predict disintegration time, tablet 20

excipient) hardness, friability, weight,
thickness, porosity, mean pore
diameter, and dissolution (% at
30min).

1990 Expert system Aerosols, Not mentioned Carrying out ‘theoretical 21
capsules, experiments’ by the computer using
granulates, galenical knowledge before testing
injection drug products in practical
solutions, and experiments
tablets

1991 RSM and ANN Matrix capsule 23 data (1 API and 4 Predict release exponent N and the 22

excipients) dissolution half-time Tg 5

1998 ANN Sustained-release 3 data (1 API and 1 Establish in vitro—in vivo correlation 23
matrix tablets excipient) (IVIVC)

2000 ANN Osmotic pump 30 data (1 API and 2 The drug release rate and the 24
tablets excipients) correlation coefficient

2002 MLR and PLS Pure drug 17 data (17 drugs) Predict intrinsic solubility 25

2003 PLS Pure drug 23 data (23 drugs) Predict solubility and permeability 26

2006 Neurofuzzy logic Immediate-release 205 data (1 API and 4 Predict tablet tensile strength, 27

and neural tablet excipients) disintegration time, friability,
networks capping, and drug dissolution rate
(%) at 15, 30, 45, and 60 min.

2011 Expert system Osmotic pump Hundreds of PPOP Establish a formulation design model 28
tablets data based on the prediction of release

behavior

2014 RSM and ANN Solid dispersions 46 data (6 APIs and 1 Predict yield, outlet temperature, and 29

excipient) mean particle size

2015 RSM and ANN Nanoparticles 18 data (1 API and 4 Predict particle size and loading 30

excipients) efficiency

API, active pharmaceutical ingredient; ANN, artificial neural network; RSM, response surface methodology; MLR, multilinear regression; PLS,

partial least square; PPOP, push—pull osmotic pump tablets.

optimized using feasibility and grid search methods. The pre-
dictions showed excellent agreement with experimental results in
disintegration time, tablet hardness, dissolution rate in 30 min, and
thickness, illustrating the effectiveness of integrating statistical
modeling with computational optimization tools. Using graphical
techniques such as response curves and contour plots further
enhanced the understanding of the formulation system. Regression
analysis was also employed to optimize the formulation variables of
griseofulvin/hydroxypropyl cellulose solid dispersions and

flufenamic acid/polyvinylpolypyrrolidone/methyl cellulose solid
dispersions for high dissolution rates and stability®'~**.

Partial least squares (PLS) regression can effectively handle
multicollinearity in datasets, while simultaneously modeling
multiple response variables and managing situations where pre-
dictors outnumber observations. Bergstrom et al.> first introduced
experimental and computational screening models for predicting
aqueous drug solubility. They generated high-quality experimental
data by developing a miniaturized shake-flask method to measure
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the intrinsic solubility of 17 compounds. These data were then
analyzed using PLS to establish correlations between molecular
descriptors such as lipophilicity (ClogP) and molecular surface
area, with solubilities, resulting in a predictive model with the
coefficient of determination (R%) of 0.91.

PLS has also been used in predicting oral drug absorption
classification based on molecular surface properties”®. Based on a
structurally diverse dataset of 23 drug molecules, the researchers
combined experimental data such as pK,, logP., and Caco-2
monolayer permeability with computationally derived molecular
surface area descriptors to simultaneously predict solubility and
permeability, enabling theoretical classification of drug absorption
profiles. The resulting model demonstrated that these surface-
based descriptors could predict solubility and permeability with
high accuracy, achieving 87% prediction accuracy for the
solubility-permeability profile of the 23 compounds. Furthermore,
the model achieved a prediction accuracy of 77% on an external
test set comprising FDA-recommended standard compounds.
These studies highlighted the value of integrating experimental
and computational approaches to improve early-stage solubility
and permeability predictions.

2.2.  Expert systems

In the 1980s, expert systems were applied in drug delivery. Expert
systems were designed to mimic human decision-making by
integrating domain-specific knowledge into rule-based frame-
works. These systems relied on predefined rules derived from
expert insights to generate predictions or recommendations.

One of the earliest documented applications of expert systems
in pharmaceutical formulation was introduced in 1989, when
Zeneca Pharmaceuticals UK and Logica UK developed the
Product Formulation Expert System (PFES)™*. Since then, similar
systems have been developed in the 1990s. For instance, the
Cadila System facilitated tablet formulation by leveraging
knowledge of API properties, such as solubility, hygroscopicity,
and dissolution rate®*. Similarly, the Capsule System and Sanofi
System™ were designed to optimize hard gelatin capsule formu-
lations based on specific preformulation data. Zeneca Pharma-
ceuticals further extended the application of PFES to create expert
systems for tablets, parenteral formulations, and film coating,
demonstrating its versatility across various dosage forms®°® >,
Around the same period, the Boots Company introduced an expert
system to aid in the formulation of creams and lotions, expanding
the scope of Al in pharmaceutical development.

As technology evolved, expert systems expanded to include
immediate-release and controlled-release formulations. For
example, push-pull osmotic pump tablets (PPOPTs) benefited
from Al-assisted expert systems that integrate predictive models
with knowledge-based rules, enabling rapid prototyping and effi-
cient exploration of formulation options>®. SeDeM Expert System,
known as “Sediment delivery model”, was an innovative tool
developed in 2005. Designed for direct compression tablets, it
incorporated nearly all the critical physical parameters required to
evaluate the compressibility of powdered substances’’. The
SeDeM expert system has since been widely applied to the pre-
formulation study of oral tablets such as cefuroxime axetil and
paracetamol . A notable extension of SeDeM is the SeDeM-ODT
variant, explicitly tailored for orally disintegrating tablets (ODTs).
This system assesses excipient and API mixtures for compress-
ibility and orodispersibility, introducing indices like the index of
good compressibility and orodispersibility (IGCB). Such tools

facilitated the optimization of APIs, including ibuprofen*' **.

Importantly, SeDeM-ODT enabled simultaneous optimization of
direct compression and disintegration properties, further
enhancing formulation precision.

Another key development in this era was the Ontology-Based
Expert System for Immediate-Release Tablets (OXPIRT)**. The
OXPIRT system supported pharmacists by offering ingredient
lists, manufacturing processes, lab-scale production steps, and
equivalence validation with original drugs. It combined domain
knowledge from guidebooks and patents, structured in ontology
format, with production rules for calculations and process rec-
ommendations, effectively bridging traditional expertise with
computational intelligence.

2.3.  Artificial neural networks

Inspired by biological neural networks, artificial neural networks
(ANNs) consist of interconnected layers of nodes that process
information through weighted connections. This structure allows
ANNs to model intricate input-output dynamics and capture
complex, nonlinear relationships. ANNs can learn patterns from
data, potentially offering advantages in handling certain types of
variability in the data. In pharmaceutical development, ANNs
have provided additional tools for modeling complex systems,
complementing traditional approaches in areas such as formula-
tion optimization and process control.

A significant early application of ANNs in pharmaceutical
development was reported in 1991, modeling and optimizing
controlled-release hydrophilic matrix capsules containing mix-
tures of anionic and non-ionic cellulose ether polymers®”. This
study provided a comparative analysis of ANN and response
surface methodology (RSM) to understand the relationships be-
tween formulation variables and drug release parameters. In their
case study, ANN showed higher predictive accuracy for dissolu-
tion half-time in the validation datasets.

ANNs were also applied to establish in vitro—in vivo correla-
tion (IVIVC). In 1999, a study” used dissolution profiles from
two extended-release formulations to predict their corresponding
in vivo PK behavior. 29 different ANN architectures were evalu-
ated, including feedforward neural networks, recurrent neural
networks, and generalized regression neural networks (GRNN).
The feedforward neural networks and GRNNs demonstrate the
highest predictive accuracy in modeling the relationship between
dissolution and in vivo PK profiles. This study underscored the
potential of ANN in capturing the intricate dynamics of drug
release and absorption.

Neurofuzzy logic represents a hybrid computational approach
combining the pattern-recognition capabilities of neural networks
with the interpretability of fuzzy logic. A comparative analysis of
neurofuzzy logic and neural networks was conducted to model
205 experimental data from immediate-release tablet formula-
tions*’. Both methods effectively predicted tablet tensile strength
and drug dissolution profiles. While neural networks exhibited a
slight advantage in predicting unseen data, neurofuzzy logic
provided an additional benefit by generating interpretable “if-
then” rules, offering deeper insights into formulation performance.
In a subsequent study®, neurofuzzy logic with decision trees was
compared for knowledge extraction from the same dataset. Both
techniques successfully generated useful insights using “if-then”
rules or decision trees. In a comparative modeling study*® of
developing direct compression formulations, neurofuzzy logic was
evaluated against multiple linear regression using data from
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factorial design experiments. Neurofuzzy logic achieved lower
normalized error rates and superior prediction accuracy for five
output variables. Additionally, the derived fuzzy rules quantified
the nonlinear relationships between formulation variables. These
findings were consistent with statistical results while also
revealing novel insights.

2.4.  Limitations of early Al applications in drug delivery

Despite introducing innovative perspectives to the drug delivery
field, early Al techniques failed to gain widespread attention at
that stage due to several significant limitations, as summarized in
Table 3.

One of the most critical barriers was data scarcity. In the early
stage, the absence of publicly available formulation databases
necessitated reliance on internal laboratory data. Many predictive
models developed during this time were based on limited exper-
imental data (typically fewer than 100 formulations, each
involving only a few drugs and excipients). The representation of
drugs and excipients in these models was also insufficient. Early
studies often relied on basic molecular descriptors and simple
physicochemical parameters, failing to capture the intricate in-
teractions between APIs, excipients, and environmental factors
such as pH and temperature. These limitations made it difficult for
models to accurately predict phenomena like dissolution profiles,
stability, and pharmacokinetic behavior across diverse scenarios.
Moreover, the early Al models were inherently constrained by
their design focus on specific datasets and narrowly defined
problems, and rarely progressed beyond proof-of-concept studies
in real-world pharmaceutical development.

3. Current stage: era of Al-powered drug delivery since
2018

Al is ushering in a revolutionary era in drug delivery starting from
2018. Powered by the exponential growth in pharmaceutical data
availability, advanced Al algorithms, and unprecedented compu-
tational capacities, Al drives a critical research paradigm shift
from traditional empirical methods to data-driven approaches.

Table 3

This transformation is first characterized by continuously
expanding data sources and structures, where diverse datasets
spanning tabular, image, and text formats are integrated to
enhance drug delivery strategies. The emergence of advanced
learning algorithms has empowered researchers to harness this
wealth of data in unprecedented ways, offering innovative solu-
tions to persistent challenges in pharmaceutical development. This
section systematically examines the current state of Al-driven
drug delivery, highlighting how the convergence of data growth
and technological maturity is accelerating pharmaceutical
research and development.

3.1. Data expansion and advances in data processing

With the advancements of Al-driven drug delivery, the diversity in
data sources and structures continues to expand. In early applica-
tions, researchers tended to rely on curated in-house experimental
data. Such datasets were often expensive to generate and limited to
exploring narrow chemical or formulation spaces. With the
development of data mining and big data analytics tools, compiling
publicly available data, including literature, patents, and books, has
become a common approach to expand datasets. Database research
continues to increase as the importance of data surges in the era of
Al Classic databases in Al-driven drug development, such as
DrugBank*’, PubChem®®, ChEMBL*, and OCHEM™’, primarily
focus on drug substances. In recent years, databases specific to
drug delivery have also emerged, such as cyclodextrin-drug in-
clusion complex databases’ °°, nanoparticle-related  data-
bases”*, drug-excipient interaction database™, self-emulsifying
drug delivery system dataset’’, and cross-linked polyester im-
plants dataset™. A recent notable work is a drug product database
developed by Murray et al.”” Recognizing that existing large-scale
databases primarily focus on drug substances rather than pharma-
ceutical products, the authors employed a semi-automated
approach to extract information on small-molecule drugs from
the European Public Assessment Reports (EPARs) and constructed
a machine-readable database. This database includes details such
as administration route, dosage form, formulation information, and
maximum clinical dose for each drug product. Furthermore,

Comparison of early and current Al applications in drug delivery.

Aspect Early Al

Current Al

Data volume

samples)
Formulation scope
Data representation

Smaller datasets (typically <100 data

Limited to a few drugs and excipients
Simple representation of drugs and
excipients (e.g., basic molecular descriptors)

Larger datasets (typically >500 data
samples)

> 10 drugs and all important excipients
Advanced molecular representations,
including molecular descriptors, molecular
fingerprints, 3D conformations, molecular
graphs, and text-based embeddings

Algorithms Basic statistical methods, expert systems, Advanced AI algorithms, including classic
and simple neural networks machine learning (e.g., LightGBM), deep
neural networks, and advanced architectures
such as transformers and generative models
Generalization Poor generalization, formulation Better generalization, formulation, and
optimization prediction
Interpretability Limited interpretability for neural networks Advanced algorithms and tools for model
interpretability

Computational resources
and infrastructure

Restricted by limited computational power

Supported by cloud computing and high-
performance GPUs

3D, three dimension; Al, artificial intelligence; GPUs, graphics processing units.
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leveraging the constructed database, the authors developed Al
models to evaluate drug-likeness, select excipients, and predict oral
absorption fractions, thereby testing the utility of the dataset in
providing valuable insights.

To reduce data costs and improve data homogeneity, novel
experimental techniques are utilized to provide low-cost and high-
quality data for AI model development'®*°'. Compared to
traditional drug formulation experiments, emerging experimental
techniques—especially ~ micro-scale  high-throughput  exper-
iments—require minimal material, feature high automation, and
can generate large volumes of highly homogeneous data®. These
techniques also excel in data-intensive acquisition and flexible
experimental design, making them well-suited for integration with
deep learning (DL) optimization and design frameworks. Common
methods include microfluidics, continuous flow systems,
multiwell-plate-based parallel reactor systems, and additive
manufacturing®*. Among these, microfluidics is widely applied
in nanomedicine research. Microfluidic technology enables precise
manipulation of fluids at the micrometer scale through micro-
channels or chambers to control, mix, react, and separate liquids"5 .
These systems, typically made of silicon, glass, or polymers, are
cost-effective, require low sample volumes, and offer high effi-
ciency. Compared to conventional experimental methods, data
generated by microfluidics are more consistent and reproducible,
providing higher-quality training data for Al algorithms. Its high-
throughput nature significantly reduces data acquisition costs,
facilitating the construction of larger datasets. For example, Eug-
ster et al.'® used microfluidics to generate a dataset comprising
over 1300 liposome formulations and developed an XGBoost
model to predict liposome formation and size under varying pro-
cess parameters. The rapid experimental capabilities of micro-
fluidic platforms also shorten the validation cycle for Al
predictions. Drug delivery strategies predicted by Al can be
immediately tested in vitro using microfluidics, enabling quick
adjustments to algorithms and model parameters. Therefore, such a
closed-loop feedback mechanism can greatly enhance the effi-
ciency of Al-driven drug delivery. For instance, Ortiz-Perez et al.*®
combined microfluidic formulation techniques, high-content im-
aging, and active learning strategies to design an integrated
workflow. Using this modular platform, they developed poly
(lactic-co-glycolic acid)-polyethylene glycol nanoparticles with
high uptake rates in human breast cancer cells. Further insights into
machine learning (ML) applications in microfluidics can be found
in the review by Dedeloudi et al°’. Beyond micro-scale high-
throughput experimental technologies, other emerging techniques,
such as organ-on-a-chip systems®®, can also play critical roles in
exploring data for understanding drug delivery. These technologies
share a common trait of overcoming the limitations of traditional
experiments by generating high-throughput, high-precision, and
highly sensitive experimental data with unique perspectives, thus
facilitating Al-driven drug delivery.

Since drug delivery involves complex multiscale processes,
advanced imaging technologies also provide multiscale data sup-
port. Imaging technologies refer to techniques that utilize princi-
ples of physics, chemistry, and biology to acquire structural,
functional, and dynamic information within biological systems®’.
Commonly used imaging technologies include high-content im-
aging, spectroscopic analysis, and non-invasive biological quan-
tification techniques. For example, high-content imaging is a
technology that integrates automated fluorescence microscopy,
image analysis, and data processing’’. It can provide rich quan-
titative information at the single-cell or tissue level, precisely

evaluating drug delivery systems’ targeting capability, release
behavior, and biological effects. In the study utilizing active
learning for high-throughput nanoparticle design®, high-content
imaging was employed to automatically process wide-field fluo-
rescence images to quantify nanoparticle uptake. Based on scat-
tering caused by molecular vibrations, rotations, and other low-
frequency modes, Raman spectroscopy provides insights into
molecular structure and composition. It plays a critical role in the
characterization and real-time monitoring of drug release pro-
cesses’'. Abdalla et al.”* were the first to use Raman spectroscopy
to characterize polysaccharides for building a machine learning
model to predict drug release from polysaccharide matrices in the
colonic environment. They found that the Raman peaks of
glycosidic bonds were key features for predicting drug release.
Other non-invasive imaging techniques include magnetic reso-
nance imaging (MRI), computed tomography (CT), and positron
emission tomography (PET). These methods allow dynamic,
quantitative imaging of biological systems without disrupting
tissue structures’”. Such technologies are particularly suitable for
long-term in vivo observation of drug delivery processes, enabling
real-time monitoring of drug behavior within organisms, reducing
the use of experimental animals, and lowering data acquisition
costs. In short, advanced imaging technologies offer multidi-
mensional information about the in vivo behavior of drugs and
carriers and quantitatively assess drug delivery efficacy, which is
critical for training and optimizing Al models.

As the unstructured and multimodal data in multi-scale drug
delivery emerged and accumulated, efficient data processing
methods have been developed to support data integration and
analysis. Drug delivery involves multilevel, multiscale biological
processes, ranging from drug-carrier interactions to the interplay
between drug delivery systems and biological systems. Such a
complexity results in highly nonlinear, multidimensional charac-
teristics in drug delivery data, which includes, but is not limited to,
tabular data’ (describing formulation, process, and experimental
condition information), molecular graphs’” (describing molecular
structures), text formats’® (describing drug structures or se-
quences), images’’ (depicting the appearance of drug products or
in vivo drug distribution), and time-series data’® (such as drug
release kinetics and pharmacokinetic curves). Traditional feature
extraction and machine learning methods often struggle to
comprehensively analyze unstructured and multimodal data,
limiting drug formulation design and optimization. Through the
flexible combination of neural networks, deep learning can auto-
matically learn high-dimensional feature representations from
large-scale complex data, making it particularly suitable for
deciphering complex drug delivery processes. For example, nat-
ural language processing (NLP)’® and computer vision (CV)™
technologies are used to process text and image data, respectively.
In 2019, our group’* pioneered the application of deep learning in
pharmaceutical formulation predictions, achieving over 80% ac-
curacy in predicting the disintegration time of orally fast-
disintegrating films and the dissolution profiles of sustained-
release matrix tablets. Furthermore, data alignment and integra-
tion techniques, cross-modal learning, and multimodal deep
learning frameworks have been developed to handle multimodal
data®'. For example, our group®” combined graph-based networks
and generative adversarial networks based on tabular representa-
tions to predict organic crystal structure, which is a critical solid-
state property for pharmaceutical development. Beyond this, deep
learning methods have been effectively used to predict the struc-
ture of materials”, RNA84, and proteinsé”5 , which form the
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foundation of drug delivery research. Drug carrier development,
involving material selection, structural design, and optimization, is
one of the core tasks for drug delivery. Using convolutional neural
networks (CNNs), researchers can analyze carrier morphology and
structural characteristics from image data, identifying correlations
between microstructures and drug release performance. For
example, Hornick et al.*® introduced the On-Demand Solid
Texture Synthesis (STS) architecture, which generates 3D volu-
metric textures based on 2D exemplar texture images. This
approach was applied to design formulations with desired critical
quality attributes by leveraging representations of their micro-
structural features. The proposed Al method was validated using
oral tablets and long-acting implantable formulations as examples.
The drug release mechanisms are influenced by material structure,
drug properties, and physiological environments, making it diffi-
cult for traditional kinetic models to describe complex drug
release processes accurately. Deep learning offers new solutions to
this challenge®’®°. Data-driven drug release analysis methods can
not only uncover the primary mechanisms of drug release but also
provide theoretical support for the design of intelligent drug
release systems. The in vivo behavior of drug delivery systems
includes carrier distribution in blood circulation, accumulation in
target tissues, cellular uptake, and release. Due to the complexity
of biological systems, these processes are challenging to analyze
using traditional modeling approaches comprehensively. Deep
learning, combined with bioimaging techniques, provides power-
ful tools for studying the in vivo behavior of drug delivery sys-
tems. Deep learning-based image segmentation and feature
extraction techniques can automatically identify the distribution of
carriers in different tissues from in vivo imaging data and quantify
their localization and drug release at the cellular level. For
instance, Liu et al.”’ designed a 3D tumor-mimicking model with
in vitro—in vivo correlation for drug release. By analyzing
spatiotemporal images of the in vitro model, a dual-attention
U-Net trained GAN was employed for vessel segmentation and
quantitative drug analysis to evaluate the spatiotemporal dynamics
of drug release within solid tumors. In short, deep learning offers
novel tools and perspectives for analyzing the complexities of
drug delivery systems, driving the design and optimization of
these systems to new heights.

3.2.  Advanced learning strategies for limited data scenarios

Data sparsity is one of the biggest challenges in drug delivery due
to the high cost of experiments, long data collection cycles, and the
diversity of chemical space. These factors often lead to poor model
generalization and unstable predictions. To address these limita-
tions, various advanced learning strategies have been developed to
enhance model accuracy even with limited training data.
Ensemble learning is one of the effective strategies to address
these challenges. Ensemble learning combines the predictions of
multiple sub-models to reduce the bias and variance of individual
models’". By leveraging diversity, it mitigates the risk of over-
fitting and improves the overall predictive performance, robust-
ness, and generalization capability of the model to unseen data,
laying the foundation for the maturity of Al-driven drug delivery
research. Several studies have reported that ensemble learning
algorithms, such as Random Forest, XGBoost, and LightGBM,
often exhibit superior predictive performance and stability when
handling tabular data in drug delivery’”. In a study on drug-
excipient compatibility prediction’”, the authors used a stacking-
based model integration strategy, demonstrating that the stacked

model outperformed individual models in predictive capability.
Similarly, Deng et al.”* compared the performance of 14 machine
learning algorithms in developing predictive models for the
dissolution curves of microsphere formulations. They identified
four models based on different assumptions that offered superior
predictive performance. Furthermore, the authors employed a
voting-based ensemble strategy to construct a consensus model,
effectively reducing prediction errors in both the initial release
phase and the plateau phase of the dissolution curves.

To overcome data scarcity challenges, transfer learning and
multitask learning enhance model performance by sharing infor-
mation across domains and related tasks. Transfer learning lever-
ages knowledge learned from pre-trained models in source
domains and transfers it to target domains, making it particularly
suitable for tasks with limited data but similar structures or
patterns”. For example, the pre-trained molecular representation
models can capture deep insights into molecular structures from
large-scale molecular databases like PubChem or ChEMBL, which
are then fine-tuned for specific tasks, such as molecular property
prediction”®. Multitask learning can simultaneously optimize ob-
jectives for multiple related tasks, enhancing performance on each
task through shared representation learning”’. Related tasks such as
stability, drug loading efficiency, and targeted release performance
can be jointly modeled in drug delivery. By sharing information
across tasks, multitask learning enables robust predictions even
under data-sparse conditions. Demonstrating the synergistic po-
tential of these approaches, our group’® developed a unified
framework in 2018 that integrated both transfer learning and
multitask learning for predicting key pharmacokinetic parameters.

Active learning significantly accelerates model development
by strategically selecting the most informative samples for label-
ing, achieving high model performance with minimal experi-
mental data requirements’”. In drug delivery, active learning can
start with just a few experimental data points and guide experi-
mental design by prioritizing the selection of the most represen-
tative or uncertain drug molecules for experimental validation.
This approach incrementally expands high-value datasets, reduces
data wastage, and improves model accuracy and reliability.
Rakhimbekova et al.'”’ compared various active learning pro-
tocols in designing peptide-binding polymers and studied factors
such as the initial training set size and task complexity on active
learning performance. Using the best-performing active learning
method, the authors efficiently designed novel peptide-binding
polymers and validated them experimentally. This comprehen-
sive and detailed work is a benchmark for using active learning to
accelerate drug delivery system development.

Additionally, in drug delivery, challenges may arise from
missing data labels, such as in positive-unlabeled learning sce-
narios, where negative samples are unavailable. In our recent
work'?", a semi-supervised learning framework was designed to
address the issue of missing negative samples in formulation
strategy decision-making tasks, and based on this framework, we
developed the first Al system named FormulationDT for drug
formulation strategy design, as illustrated in Fig. 3.
FormulationDT covers multiple decision-making steps with a total
of 12 machine learning classification models, achieving an
average area under the receiver operating characteristic curve
(ROC_AUC) score above 0.90. In short, through efficient adap-
tation, knowledge transfer, chemical space navigation, and task
collaboration, advanced Al learning strategies not only improve
model performance but also lay the foundation for a paradigm
shift towards computer-driven drug development.
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3.3.  Deep learning driving the paradigm shift of Al-powered
drug delivery

Drug delivery research essentially involves multi-objective opti-
mization (e.g., delivery efficiency, side effects, stability, cost-
effectiveness) in a high-dimensional space composed of material
properties and process parameters to achieve the ideal response
from biological systems'®”. In early studies, statistics-based
Design of Experiments (DoE) methods were commonly used by
formulation scientists as a tool for formulation optimization.
However, such methods are limited to explaining linear or low-
dimensional nonlinear relationships between variables and re-
sponses within a narrow design space, making them ineffective in
navigating high-dimensional nonlinear spaces. The powerful
feature extraction capability and flexible neural network archi-
tectures of deep learning enable it to adapt to multimodal data and
diverse tasks, providing strong driving forces for solving complex
problems in the drug delivery field.

Deep learning-based methods can efficiently navigate the
complex design space of pharmaceutical formulations and pro-
cesses to identify optimal solutions. A typical example is the work
by Li et al.*’, who optimized Verapamil hydrochloride polymer—
lipid hybrid nanoparticles (PLNs). In this study, neural networks
demonstrated superior data fitting performance compared to
response surface methodology and were further combined with a
continuous genetic algorithm to optimize the drug loading effi-
ciency and mean particle size of the PLNs. Sano et al.'” reviewed
the application of Bayesian optimization in drug development,
demonstrating its effectiveness in reducing experimental trials and
improving optimization efficiency compared to traditional DoE
approaches. Reinforcement learning (RL) is a machine learning
paradigm specifically designed for optimization tasks'®*, aiming
to learn a policy through interactions between an agent and
the environment to maximize cumulative rewards. Currently, RL
is more commonly used for optimizing drug administration
methods and dosage regimens'°>'%. Based on the principles of

The Al formulation strategy decision route and the application scenarios of FormulationDT. Adapted from Ref. 101 with permission

reinforcement learning, it can also be applied to optimizing drug
delivery systems'’” and dynamically adjusting manufacturing
processes”)x, provided that a suitable environment is designed to
enable efficient and low-cost interactions. For instance, re-
searchers have developed algorithms using reinforcement learning
strategies to plan the optimal path for nanorobots delivering drugs
to tumor sites'”’. The proposed method can dynamically optimize
delivery paths when tumor locations in patients change, demon-
strating high decision-making efficiency and low error rates.

In addition to prediction and optimization tasks, deep learning
holds potential for further drug delivery design. The design tasks
in drug delivery aim to deduce the ideal carriers or formulation
combinations from desired properties (e.g., delivery efficiency,
patient response). Compared to predictive tasks and optimization
tasks confined within limited design spaces, design tasks in drug
delivery have more disruptive innovation potential, encompassing
scenarios such as functional excipients design and innovative
formulations exploration. Functional excipients are auxiliary
substances in pharmaceutical formulations that serve specific
functions, playing a crucial role in optimizing drug performance
or improving formulation quality. These include, but are not
limited to, cyclodextrins, lipids, and polymers'?”. AI techniques
have emerged as powerful tools in mRNA-LNP formulation
development, particularly in designing ionizable lipids. For
example, a recent work from our group''® performed Al-driven
virtual screening on a large-scale library of nearly 20 million
lipids. By using developed machine learning models to predict
two key properties of mRNA-LNPs (delivery efficiency and
apparent pK,), two iterations of screening were conducted. All six
molecules from the second round matched or exceeded the
benchmark DLin-MC3-DMA’s performance, with one achieving
in vivo delivery efficiency comparable to the benchmark SM-102
lipid used in the marketed mRNA-LNP vaccines. This demon-
strated the potential of Al technology for efficient screening of
ionizable lipids from large-scale virtual libraries. The convergence
of Al techniques with combinatorial chemistry is another design
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strategy for discovering novel ionizable lipids, aiming to enhance
the delivery efficiency, safety, and organ specificity of
LNPs'>!"""113 Beyond screening virtual libraries, deep genera-
tive models offer a promising solution for inverse design. Com-
mon generative models include Generative Adversarial Networks
(GANSs), Variational Autoencoders (VAEs), and diffusion models.
GAN:Ss operate through a competitive process between a generator,
which generates data to mimic real samples, and a discriminator,
which distinguishes real data from generated ones. High-quality
data can be produced by the generator through such an adversa-
rial training process''*. VAEs map data into a latent space and
reconstruct it by optimizing the distribution of latent variables
using variational inference, enabling the generation of diverse and
continuous samples''”. Diffusion models simulate the gradual
noise addition and removal process, reverse-engineering realistic
distributions of real samples from random noise''®. Deep gener-
ative models have been widely applied in drug molecule
design''""""°, which also indicates their potential for functional
excipient design'?”'?'. For instance, Yue et al.'*> conducted a
benchmark study exploring the use of six common deep genera-
tive models (Variational Autoencoder, Adversarial Autoencoder,
Objective-Reinforced GANs, Character-level Recurrent Neural
Network, REINVENT, and GraphINVENT) for de novo polymer
design, aiming to design polymers with high glass transition
temperatures. Similarly, Liu et al.'* trained a molecular graph
generative model based on invertible regularized flows on a
dataset of 250k polymers to design polymers with a high glass-
transition temperature (7,) and a wide bandgap. Beyond func-
tional excipient design, generative models can also create drug
formulations with desired performance. The aforementioned
work®®, combining the Continuous-Conditional GAN method and
the On-Demand Solid Texture Synthesis (STS) architecture to
design implants with controlled particle size and drug loading, is a
typical example. Elbadawi et al.'** trained conditional GANs
(cGANSs) on a dataset of over 1437 3D-printed formulations. They
explored 27 different cGAN architectures to generate 270 for-
mulations and selected a model with a balanced capability to
generate novel yet realistic formulations, successfully printing one
of the generated formulations. Additionally, reinforcement
learning can be integrated with deep generative models to opti-
mize molecule generation through reward mechanisms'>. Over-
all, deep learning-based design demonstrates the potential to drive
a new paradigm of target-oriented, design-driven research in drug
delivery.

3.4. Al platform deployment for model applicability
enhancement

Developing user-friendly Al platforms can enhance the practical
value of Al models while facilitating their continuous improve-
ment and broader adoption. Although the development of Al
models is crucial, their actual impact depends on whether they can
be efficiently and conveniently utilized by a wider range of users,
such as pharmaceutical researchers and clinicians. Deploying Al
models on public platforms significantly lowers the technical
barriers for drug developers to integrate Al into their workflows.
Furthermore, public deployment can drive the iterative advance-
ment of Al models. Under data privacy protection, Al models can
be fine-tuned and updated using real-world data and user feed-
back, thereby improving their predictive performance and gener-
alizability. Additionally, Al platforms can promote collaboration
among various parties within and beyond the pharmaceutical

industry. Academia, industry, and regulatory agencies can
leverage shared Al platforms to exchange data, validate model
performance, and assess the applicability of emerging Al algo-
rithms. This collaborative framework not only accelerates drug
development but also facilitates the regulatory integration of Al in
drug delivery. Regulatory authorities can utilize these platforms to
evaluate the reliability of Al in formulation design, quality con-
trol, and risk assessment, laying the foundation for the incorpo-
ration of Al into pharmaceutical regulatory frameworks.

Al platform construction encompasses multiple steps,
including model optimization and packaging, application pro-
gramming interface development and integration, user-friendly
front-end interface design, cloud computing and scalability, data
privacy and security protection, and the integration of a contin-
uous feedback mechanism. These processes can be referenced by
several drug delivery Al web-platforms from our group, which
span preformulation studies, formulation strategy design, and
formulation prediction. In 2021, our group'*® developed the first
drug delivery Al platform, PharmSD, to predict solid dispersions’
stability and dissolution. Following this, preformulation Al plat-
forms, PharmDE’° and FormulationBCS'?’, were developed to
evaluate drug-excipient compatibility and predict Bio-
pharmaceutics Classification System (BCS) categories, respec-
tively. FormulationAI’” is the first integrated Al platform for drug
formulation prediction, covering 16 key formulation characteris-
tics across six formulation types: cyclodextrin inclusions, solid
dispersions, phospholipid complexes, nanocrystals, self-
emulsifying drug delivery systems, and liposomal formulations.
By simply inputting the basic information of drugs and excipients,
users can efficiently perform Al-powered excipient selection, and
formulation & process parameter design. The recently launched
FormulationDT'?", the first data-driven and knowledge-guided Al
platform for small molecule formulation strategy design, serves as
a crucial decision-making tool upstream of formulation develop-
ment, adding an important component to the new paradigm of
computer-driven drug development'*®. Moving forward, Al plat-
forms in drug delivery are expected to become increasingly
standardized, and the functionalities of Al platforms will further
expand. For example, developing automated machine learning
(AutoML) platforms'* in recent years can enable non-data sci-
ence researchers to easily access advanced learning algorithms for
building Al models in drug delivery. With the rapid advancement
of large language models, developing Al assistants for drug de-
livery is another viable approach to lowering the barriers to Al
usage. Furthermore, optimizing models through data sharing can
create an integrated “data-model-user” ecosystem, fostering
continuous positive feedback for Al-driven drug delivery. Overall,
the deployment of Al platforms not only enhances the accessi-
bility of Al in the pharmaceutical industry but also provides strong
support for scientific innovation and industry upgrades, acceler-
ating the pace of intelligent drug development.

4. Methodology for reliable AI-driven drug delivery
research

The expansion of data and advancements in Al technology have
driven the widespread adoption of Al in drug delivery. However,
the modeling approaches employed by different researchers vary,
posing challenges to the reproducibility and reliability of the
research. To support and ensure the quality, reliability, and
reproducibility of implementing Al in drug delivery research, we
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propose a comprehensive set of guidelines that should be followed
throughout the research lifecycle (Fig. 4). The detailed guidelines
address four critical aspects: (1) problem definition for deter-
mining research objectives and data requirements; (2) data engi-
neering for improving data quality; (3) model development for
robust models; and (4) model sharing and deployment for pro-
moting utility. Each component has been carefully designed to
help researchers avoid common pitfalls in Al-driven drug delivery
studies and improve model reliability and reproducibility. Spe-
cifically, based on the guidelines and our previous experience, the
“Rule of Five” (Ro5) was proposed as the essential requirements
for reliable Al applications in formulation prediction.

e Sufficient dataset volume, preferably >500 entries;

e Component diversity, preferably >10 drugs and coverage of
critical excipients;

e Inclusion of all critical process parameters;

e Proper molecular representation for both drugs and excipients,
e.g., molecular descriptors and fingerprints;

e Suitable algorithms and model interpretability.

Here we present two representative case studies demonstrating
our proposed “Rule of Five”. The first case study examined the
stability prediction of solid dispersions'*”. The researchers
established a dataset comprising 646 formulations, including 50
drug molecules and 47 polymer excipients. The model inputs
included molecular descriptors of both drugs and polymers, along
with critical process parameters such as preparation methods and
process temperatures. Comparative evaluation of eight machine
learning algorithms revealed that the random forest model ach-
ieved the highest prediction accuracy of 82.5% on the test set.
Analysis of the 20 most important features identified key patterns
in the model’s decision-making process. The second case study
investigated machine learning applications in drug/cyclodextrin
systems'®. This research constructed a dataset of 3000 formula-
tions, including 1320 guest molecules and 8 cyclodextrins. Among
three different algorithms evaluated, the LightGBM model per-
formed best, achieving an R? value of 0.86 on the test set. Feature
importance analysis revealed the key molecular descriptors and
physicochemical properties that predominantly influenced the

model’s predictions, providing valuable insights for future
formulation design. Notably, this study evaluated the impact of
dataset size on model performance by progressively reducing the
training data volume. Reducing the dataset from 3000 to 500
samples led to substantial performance degradation, with mean
absolute error (MAE) increasing from 1.38 to 2.28 kJ/mol and R?
decreasing from 0.86 to 0.58. These findings empirically
demonstrated the importance of adequate dataset size in Al-driven
drug delivery research.

4.1.  Problem definition

Problem definition is a crucial first step in any data analysis
project. At this stage, the study objective should be defined, such
as predicting drug—excipient compatibility or drug release pro-
files. The next step is to determine what data needs to be collected
to address the identified problem effectively through domain
expertise. Careful consideration at this stage is crucial as it can
prevent unnecessary rework and costly data recollection later in
the project.

4.2.  Data engineering

4.2.1.  Data collection
When initiating data collection, public databases and repositories
often serve as valuable initial data sources, potentially offering
substantial datasets that can significantly reduce the burden of data
collection. However, such public resources are not always avail-
able for specific drug delivery tasks. Consequently, researchers
often need to extract data from patents and literature manually.
Modern data mining approaches based on NLP and ML have
provided advanced tools and techniques to assist in this data
collection process, which helps to build semi-automated or fully
automated pipelines to reduce manual labor requirements and
accelerate data gathering processes'>"*'*%. It is worth noting that
whether using public datasets or newly collected information, all
data sources should be meticulously documented and verified to
prevent recording errors during collection.

While the ideal scenario involves collecting extensive and
diverse datasets, the reality is that the amount of data that can be
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collected is largely determined by the specific drug delivery task,
ranging from tens to thousands of data points. Therefore, choosing
the appropriate algorithm based on the amount and type of data is
more important. For example, a range of advanced techniques
developed specifically for small datasets, such as data augmen-
tation and transfer learning, may help build robust models even
with limited data resources. For a detailed discussion of
addressing data sparsity through advanced learning strategies,
please refer to Section 3.2.

4.2.2. Data cleaning and management

Data cleaning and preprocessing are key steps in the data engi-
neering pipeline for further data quality improvement. The basic
operations to clean data include duplicate removal and missing
value handling. While removing features with missing values
directly is possible, sometimes we wish to retain important fea-
tures by filling in missing data instead. Either statistical methods
(e.g., mean or median imputation) or ML-based imputation tech-
niques (e.g., missForest'*®) can be used to deal with missing
values. However, attention must be paid to the proportion of
missing values, the missingness mechanism, and the missing data
patterns when choosing appropriate imputation methods'**. Many
Python packages provide efficient tools to automate these pro-
cesses, which are highly efficient and especially beneficial when
working with large datasets.

Another important issue that must be treated with caution is the
bias that arises when integrating data from multiple sources,
which may obscure important patterns in the dataset. Such bias
may arise from differences in experimental conditions, computa-
tional methods, or data collection protocols across different da-
tabases. Establishing a standardized data processing pipeline and
documentation is required to identify and manage the potential
bias. All steps throughout the cleaning and merging process
should be meticulously documented and reported to ensure
reproducibility and traceability.

4.2.3.  Data representation
In addition to drug/excipient molecules, data representation in
drug delivery also includes information such as formulation data
and experimental conditions. This multifaceted nature requires
careful consideration of various representation methods for
effective model development while maintaining interpretability.
Drugs and excipients are primarily molecules. A common
practice is to convert these molecules into their SMILES string
representation and then calculate molecular descriptors or mo-
lecular fingerprints based on specialized software packages such
as PaDEL'*, Mordred'*®, and RDKit'*’. These molecular de-
scriptors and fingerprints can be further filtered by feature engi-
neering. When dealing with excipients such as polymers, the
characterization process requires additional considerations beyond
the molecular structure of the monomer, such as the degree of
polymerization'*’. Information such as formulation and experi-
mental conditions can often be represented as tabular features,
which are normally set up empirically by the researchers.
Recently, with the expansion of available data types and the
development of advanced Al algorithms, DL-based end-to-end
representations have also been adopted. This approach directly
processes various data types, including images and text, to auto-
matically learn appropriate representations, thus reducing the need
for extensive feature engineering. However, it is worth noting that
DL models are “black boxes,” and their automatically learned
representations often face interpretability challenges. For a

detailed discussion of advances in data processing and represen-
tation, refer to Section 3.1.

The success of data representation methods often lies in finding
the right balance between complexity and interpretability. While
more complex representations might capture subtle patterns in the
data, they may sacrifice interpretability and practical utility.
Conversely, simpler representations might be more interpretable
but could miss important patterns. This trade-off should be care-
fully considered based on the specific requirements of the drug
delivery application and the intended use of the resulting models.

4.2.4.  Data visualization

Data visualization is important for researchers to assess data
quality before model development, as it helps identify potential
issues that might not be immediately apparent in numerical or
tabular formats.

Exploratory data analysis (EDA) through visualization begins
with understanding the fundamental characteristics of the dataset.
Basic statistical visualizations, such as histograms, box plots, and
density plots, provide immediate insights into data distributions,
helping researchers identify outliers, distribution shifts, and po-
tential anomalies. Advanced visualization techniques refer to
dimensionality reduction methods such as principal component
analysis (PCA)"*%, -SNE'*°, and UMAP'*’. These methods can
transform  high-dimensional complex datasets into low-
dimensional representations. Visualizing these meaningful low-
dimensional representations can enable researchers to identify
data distributions and patterns that might be obscured in the
original high-dimensional space.

4.3.  Model development

4.3.1.  Data preparation

Model development in drug delivery systems demands meticulous
data preparation to ensure reliable and robust outcomes. This
foundational phase encompasses several critical aspects that
directly influence model performance and reliability, requiring
careful consideration of various techniques and methodologies.

Data balancing is a critical challenge in drug delivery datasets,
where class imbalance frequently occurs. This imbalance might
manifest in various ways, such as disproportionate success rates in
formulation studies. Such an imbalance can severely affect model
performance, as the model may be biased towards the majority
class and underperform on the minority class. To address this
challenge, balanced datasets can be created by over-sampling the
minority class and under-sampling the majority class'*'. Synthetic
Minority Oversampling Technique (SMOTE)'** is a widely used
method for generating synthetic samples for minority classes
while preserving their underlying statistical properties and distri-
bution patterns.

Another factor to consider is data scaling. When dealing with
various feature sets common in drug delivery studies, there is
often a huge difference in the range of values taken by different
features. Some algorithms (e.g., decision trees and LightGBM) are
insensitive to the range of feature values, while others (e.g., sup-
port vector machines and neural networks) are sensitive to them,
requiring appropriate scaling. When selecting these scaling
methods, both the characteristics of the features and the re-
quirements of the chosen modeling algorithm should be consid-
ered. Most importantly, the scaling parameters computed from the
training set must be consistently applied to both the validation and
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test sets to prevent data leakage and ensure the reliability of the
model evaluation.

Data augmentation is not mandatory, but it is a powerful tool to
enhance model robustness with small datasets. For example,
image transformations such as rotation and scaling can be
implemented for image-based datasets to help improve model
performance'*’. Additionally, SMILES enumeration can augment
the representations of SMILES-based drugs/excipients by taking
advantage of the fact that a single molecule can correspond to

multiple SMILES representations'**.

4.3.2.  Model training

The ML model training process for drug delivery applications
encompasses several interconnected stages from data splitting to
model optimization.

Drug delivery often faces data challenges, including small data
sizes, high noise levels, and high-dimensional features. Randomly
splitting the dataset into training, validation, and test sets is a
common approach in studies with abundant data. However, for the
small datasets often encountered in drug delivery, a common one-
shot “Training-Validation-Test” data splitting may severely affect
the model performance, such as overfitting, where models tend to
learn noise or spurious patterns from limited data instead of
capturing generalizable trends'*’. To address this, cross-valida-
tion'“° is often a better choice. This method divides the dataset
into k folds, where k—1 folds are used for training while the
remaining fold serves as the validation set. This process is
repeated k times, with each fold being the validation set once. The
final performance is reported as the average across all iterations
with their standard deviations, providing a more robust assess-
ment. Beyond this, specific data splitting methods can be adopted
for certain scenarios. For example, stratified sampling can be
incorporated into various splitting strategies to maintain consistent
data distribution across all subsets. Besides, placing drug mole-
cules and their formulations not seen during training into the test
set allows evaluation of the model’s generalization ability on
unseen drugs. Temporal splitting is a data splitting strategy that
takes the time factor into consideration, where historical data is
used for training, and newer data is reserved for testing, which
simulates the prospective application of the model'*’. For specific
data and task types in the drug delivery field, specific data splitting
methods should be considered to enable more accurate model
performance evaluation. For instance, in 2019, our group’* pro-
posed a tailored automatic data splitting algorithm for drug
formulation datasets to address the small and imbalanced data
space. In microsphere dissolution prediction”, we employed
group splitting to ensure that different time points from the same
dissolution curve did not simultaneously appear in both the
training and test sets. This approach was crucial, as the goal was to
predict an entire dissolution curve. The key principle is to use data
splitting methods aligned with the model’s intended application
scenarios.

The next step is to select ML algorithms for model training.
For beginners, it is recommended to start with algorithms that are
widely used today, such as random forest'”. After gaining some Al
implementation experience, you can try developing multiple
models using different combinations of algorithms and represen-
tations, then select the best model that suits the task at hand.
Hyperparameter tuning significantly impacts model performance.
In traditional machine learning, this involves optimizing param-
eters like the number of trees in a random forest and the kernel
type in support vector machines. The process becomes more

complex in deep learning, encompassing parameters such as
network architecture, learning rate, and batch size. Commonly
used hyperparameter search strategies are grid search, random
search, and Bayesian optimization'*®. Further insights into ma-
chine learning algorithm selection can be found in the review by
Vamathevan et al'*’,

After training individual models separately, using ensemble
methods to combine the predictions of multiple models is ex-
pected to improve the prediction results further. Further insights
into ensemble learning methods and applications can be found in
the review by Cao et al'*’.

4.3.3.  Model evaluation and selection

In addition to rational data splitting to improve the reliability of
model validation, it is also necessary to establish requirements for
model performance reporting to facilitate a thorough evaluation of
the models.

e A comprehensive report of performance metrics is the basis for
model evaluation. For classification tasks, common metrics
include accuracy, precision, recall, Fl-score, and area under
the receiver operating characteristic curve (ROC_AUC). Met-
rics such as mean square error (MSE), mean absolute error
(MAE), and coefficient of determination (R°) are commonly
used for regression tasks. Different metrics correspond to
different aspects of model evaluation, and we recommend
reporting model performance as comprehensively as possible
for a thorough assessment.

e Report model performance based on cross-validation or
repeated experiments. The generalization ability of the models
should be assessed using methods such as “group splitting”,
“scaffold splitting”, or “temporal splitting”.

e When proposing a new model, it should be compared with

simpler baseline and state-of-the-art models to clarify improved

model performance and the basis for model selection.

Model selection should be guided by task requirements rather

than model complexity alone. More sophisticated models don’t

necessarily outperform simpler alternatives, particularly when
interpretability is crucial.

4.3.4.  Model interpretability

Model interpretability in machine learning enhances the trans-
parency and practical value of Al research in drug delivery by
explaining how models arrive at their predictions in a human-
understandable way. Interpretable Al models serve as a crucial
bridge between computational predictions and pharmaceutical
sciences. They can help understand complex formulation-
performance relationships and accelerate the formulation optimi-
zation process.

Methods for providing model interpretability in drug delivery
research can be primarily categorized into two approaches:
transparent design and post hoc interpretation. Transparent design
here refers to choosing models where the decision-making process
is easy to understand during model construction, such as linear
regression and tree-based algorithms (e.g., Decision Trees,
Random Forest, and LightGBM). Post hoc interpretation methods
are normally model-agnostic, which means they can be applied to
various machine learning models, including complex deep neural
networks. These methods include using SHAP (Shapley Additive
Explanations)'”' and LIME (Local Interpretable Model-agnostic
Explanations)'? to analyze the significance of input features on
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model decisions. Notably, combining inherently interpretable al-
gorithms with post hoc interpretation tools enables validation and
complementary explanations from different perspectives, allowing
for a deeper and more comprehensive exploration of formulation-
performance relationships. For example, Mendes et al.">* imple-
mented this complementary approach by combining tree-based
models with SHAP analysis to investigate nanoparticle design
principles in cancer treatment, offering robust and comprehensive
insights into nanoparticle design-performance relationships.
Further insights into model interpretability can be found in the
review by Jiménez-Luna et al.'>*

4.3.5.  Uncertainty quantification

In drug delivery, ML models are typically trained on limited
datasets, and their prediction reliability generally decreases when
encountering compounds that differ significantly from the training
examples. This raises a critical concern in pharmaceutical devel-
opment: how much can we trust the predictions? The importance
of quantifying prediction confidence rivals that of improving
model accuracy itself. The challenges of small datasets, variable
data quality, and potential out-of-distribution predictions make it
essential to define model uncertainty for reliable real-world
applications.

Sources of uncertainty in pharmaceutics typically arise from
two primary types'>>: aleatoric uncertainty and epistemic uncer-
tainty. Aleatoric uncertainty refers to the irreducible uncertainty
caused by inherent randomness in the system, manifesting as noise
and measurement errors in the data. Epistemic uncertainty, on the
other hand, arises from incomplete knowledge or understanding,
which in machine learning models is primarily reflected in the
model’s limited understanding of the data distribution.

Various uncertainty quantification methods have been applied
in drug discovery, such as Bayesian-based, similarity-based,
ensemble-based, and probabilistic modeling approaches'>°.
Although not yet widely adopted, some machine learning studies
in drug delivery have begun incorporating uncertainty quantifi-
cation methods. For example, Deng et al.”* have developed a
consensus model for microsphere dissolution curve prediction
with quantified uncertainty by reporting the range of predictions
from four sub-models in the ensemble. Defining the applicability
domain (AD) is a method to define the range where a model can
make reliable predictions by measuring how similar new samples
are to the training data. This approach has been applied in
PharmSD'?, a machine learning platform for predicting the sta-
bility and solubility of solid dispersions. This platform used a set
of distance-based chemical structure similarity metrics to assess
whether the input drug molecules fall within the model’s appli-
cation domain.

4.4.  Model sharing and deployment

For scientific research, data and code sharing help ensure that re-
sults can be accurately replicated. This sharing validates research
results and enables knowledge transfer, allowing other researchers
to create cumulative advances on existing work. Deploying Al
models to public platforms can further transform them into prac-
tical tools, which lowers the programming barrier to using Al
models. While deploying AI models often requires more pro-
gramming knowledge beyond Al tools such as Streamlit (https://
streamlit.io/) offer a convenient solution for researchers to deploy
their models with pure Python scripts quickly. For a detailed
introduction to model deployment, please refer to Section 3.4.

5. Future stage: towards an Al-driven transformation in
drug delivery after 2024

The future stage of drug delivery stands at the threshold of a
revolutionary transformation, as we are moving towards an era
where Al becomes an integral component of drug delivery system
design and optimization. To explore this transformation, this
section delineates the technological trajectory through several key
areas, including leveraging large language models (LLMs) and the
multidisciplinary integrations between Al techniques and other
approaches. These technological convergences create new op-
portunities for more intelligent, adaptive, and personalized drug
delivery systems that could dramatically improve therapeutic
outcomes (Fig. 5). While technological advancement is crucial,
the successful implementation of Al in drug delivery critically
relies on talent development and cultural transformation. This
transformation requires nurturing interdisciplinary expertise,
fostering a data-driven mindset, and establishing collaborative
ecosystems between Al experts and pharmaceutical scientists.

5.1.  Leverage the power of large language models

The emergence of large language models (LLMs), built upon
transformer-based architectures such as BERT and GPT, repre-
sents a significant advancement in artificial intelligence. These
models, trained on vast amounts of data, have shown remarkable
potential across diverse fields, encompassing automated text
analysis, knowledge extraction, and complex pattern recognition.
ChatGPT’s release in late 2022 particularly exemplified this po-
tential. Unlike traditional ML models that require specific input
formats and coding expertise, modern LLMs like ChatGPT utilize
prompt engineering to accept natural language instructions,
making them more accessible to researchers without extensive
programming backgrounds.

Models specifically trained on biomedical and chemical data
have shown superior performance in drug development tasks.
Biomedical LLMs such as BioGPT'*” and PubMedBERT"*® excel
at understanding medical literature and biological concepts.
Chemical-oriented LLMs such as MolFormer®’, and
ChemBERTa'® specialize in molecular structure understanding
and prediction. These LLM-based systems have demonstrated
effectiveness in several key applications, including molecular
property prediction'®', understanding protein structures'®, drug
repurposing'®, and automated screening of the literature'®*. In the
field of drug delivery, the application of LLMs remains limited.
Currently, they are primarily utilized in the molecular design of
drug delivery materials'®, while many research areas remain
unexplored.

The applications of LLMs are expected to expand into broader
areas, encompassing the entire workflow from literature review
and database construction to critical formulation design and
experimental result prediction. At first, through automated anal-
ysis of vast literature, LLMs can help researchers rapidly extract
key scientific information, such as molecular structures and
properties, as well as formulation and processing parameters
related to drug delivery. This efficient knowledge extraction
capability further supports constructing and optimizing multidi-
mensional databases, encompassing material characteristics,
experimental conditions, and drug release behaviors, providing
systematic references for research. Based on this data foundation,
LLMs can generate preliminary formulation designs and experi-
mental procedures through cross-database analysis, integrating
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multidimensional information including drug properties, excipient
characteristics, and process parameters. This data-driven analysis
not only provides formulation composition recommendations but
also predicts potential experimental outcomes, offering valuable
decision-making references for researchers. Meanwhile, LLMs’
capabilities in code generation and experimental protocol design
offer new efficiency optimization approaches. On the regulatory
front, LLMs can streamline and accelerate review processes for
IND and NDA documents by providing powerful integration ca-
pabilities and automated assistance'®®. Although these applica-
tions remain conceptual, their closed-loop capability encompasses
the entire research workflow from knowledge extraction and
database construction through design generation and result pre-
diction. This comprehensive data-driven approach enables intel-
ligent collaboration throughout the research cycle, potentially
revolutionizing the efficiency of drug delivery research.

It is foreseeable that over the next few years, there will be an
increased exploration of LLMs in drug delivery studies, which
presents both opportunities and challenges. As the technology
continues to evolve, collaboration between computational scien-
tists, pharmaceutical researchers, and regulatory agencies will be
critical in establishing standardized protocols for applying LLMs
in drug delivery. Successful implementation of LLMs will require
careful validation and particular vigilance against the problem of
LLM hallucinations'®”'°*—the tendency of LLMs to generate
plausible but factually incorrect information, which could instead
lead to additional risks in pharmaceutical research and develop-
ment. These challenges underscore the importance of developing
robust validation frameworks and maintaining human oversight in
critical decision-making processes.

5.2. Cross-disciplinary artificial intelligence

While machine learning has brought numerous innovative op-
portunities to the field of drug delivery over the past few decades,
its applications face challenges such as high data requirements,
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Schematic illustration of future Al potentials in the drug delivery field.

weak interpretability, and limited generalization capabilities. By
deeply integrating machine learning with mathematically and
physically based multiscale modeling, these challenges can
potentially be addressed, paving the way for new scientific
exploration. Over the past decade, “Computational Pharmaceu-
tics” has emerged as a burgeoning discipline, introducing Al and
multiscale modeling technologies into pharmaceutics and offering
immense potential to disrupt traditional formulation development
paradigms'®'"°. Representative methods in multiscale modeling
include quantum mechanics (QM)'"", molecular dynamics (MD)
simulations' >, mathematical modeling, physiologically based
pharmacokinetic (PBPK) modeling'”, and process simulation'’*.
Our earlier review proposed the deep integration of Al
with multiscale modeling to achieve computer-driven drug
development®. In 2023, our group'*® further introduced a
computer-driven drug formulation design framework emphasizing
the “understand-design-validate-optimize” cycle, as depicted in
Fig. 6. This design-oriented framework implements the princi-
ples of Quality by Design (QbD), promising not only to improve
formulation development efficiency significantly but also to open
a promising path toward personalized medicine design. It should
be recognized that the widespread application of this framework
still faces numerous challenges, relying on the refinement of
computational modeling technologies as well as continuous
breakthroughs in cross-disciplinary artificial intelligence.

5.2.1. AI-PBPK modeling

Physiologically based pharmacokinetic (PBPK) modeling is a
computational technique used to simulate the absorption, distri-
bution, metabolism, excretion, and toxicity (ADMET) of drug in
the body'”>. This modeling approach integrates physicochemical
data by mathematical equations to predict how drugs and other
compounds behave in different tissues and organs. However, the
complexity of integrating diverse physiological, biochemical, and
physicochemical data presents significant challenges in model
development and application. Al integration addresses these
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Figure 6

The proposed computer-driven drug formulation design framework consisting of four steps: understand, design, validate, and

optimize. Step 1: Combining in silico modeling with experimental approaches to deeply understand the physiological processes, disease
mechanisms, biological effects, drug and formulation properties, as well as the microscopic details of drug delivery. Step 2: Developing Al-driven
PBPK/PD models based on a systematic understanding of drug delivery to derive the desired formulation attributes based on the required drug
exposure. Integrating machine learning with other computational modeling techniques to design or generate formulation and process parameters
according to the desired critical formulation attributes. Step 3 and Step 4: Conducting in vivo efficacy and safety evaluations for the designed
formulation, iteratively optimizing it until achieving the desired outcomes. Adapted from Ref. 128 with permission from Elsevier; copyright ©

2023 Elsevier.

limitations by offering efficient processing of high-dimensional
datasets, predictive capabilities for missing data, and enhanced
model accuracy'’®!”’.

AI-PBPK modeling has been extensively used in drug devel-
opment to predict drug behavior, optimize dosing regimens, and
assess drug—drug interactions. Specifically, Al-enhanced PBPK
models can facilitate virtual drug development by predicting drug
behavior in various scenarios, including different populations and
disease states. For example, our group'’® recently developed an
integrated Al-powered PBPK platform. This platform enables
end-to-end prediction of human PK profiles and tissue distribution
of candidate drugs by embedding Al models for eight key drug
properties into the PBPK framework—without requiring any
in vitro or in vivo experimental data. The platform was validated
using over 600 clinical plasma PK profiles, demonstrating its
ability to accurately predict systemic exposure and organ selec-
tivity of candidate compounds. AI-PBPK models also assist in
predicting the impact of physiological parameters like age and
ethnicity on drug pharmacokinetics'’. Obtaining these parame-
ters would aid in the design of drug formulations. AI-PBPK
models also support the development of quantitative adverse
outcome pathways for assessing drug toxicity and efficacy,
reducing the need for animal testing'®.

Despite the advancements, the accuracy of AI-PBPK models
still needs to be improved by expanding datasets and advanced
algorithms. For example, Al techniques are used to predict key
ADMET parameters from available datasets, such as plasma
protein binding, cell permeability, and total plasma clearance,
which are then incorporated into PBPK models'®'. This approach
reduces the need for extensive experiments in vitro and in vivo.
Moreover, Al can handle incomplete datasets by predicting
missing values, thereby improving the robustness of PBPK
models. For example, random forest models can predict tissue-to-
plasma partition coefficients (Kp) even with sparse data'®*. Thus,
the ability to predict PK parameters without complete experi-
mental data accelerates early drug discovery and reduces the
reliance on animal studies. Furthermore, neural networks,
including neural ordinary differential equations, have shown better

predictive capabilities for time-series PK profiles compared to
traditional methods'®*. Therefore, more improved approaches and
algorithms, such as deep learning, applied to build AI-PBPK
models would be more beneficial for drug development and
discovery.

AI-PBPK modeling plays an important role in future drug
regulatory assessment. Regulatory agencies like the European
Medicines Agency (EMA) and FDA actively use PBPK models in
various stages of drug evaluation to support decision-mak-
ing'®'®>. These models are invaluable for addressing drug
approval, labeling, and safety questions by providing mechanistic
insights into drug behavior'”’. However, the “black box” nature of
many AI-PBPK models makes it challenging to understand how
predictions are generated, which can limit their acceptance in
regulatory settings. Meanwhile, work on AI-PBPK model inter-
pretability should also be carried out in the future. While regu-
latory support is growing, there is still a need for standardized
guidelines and increased acceptance of AI-PBPK models in reg-
ulatory frameworks'®®. Moreover, regulatory agencies require
rigorous validation of AI-PBPK models to ensure their reliability
and accuracy for specific applications, such as predicting drug-
drug (or food) interactions, assessing formulation changes, and
evaluating organ impairment scenarios'®’>'*,

5.2.2.  AI-QM/MD modeling

AI-QM/MD modeling refers to integrating Al with quantum me-
chanics (QM) and molecular dynamics (MD) simulations in the
context of computational drug delivery. QM methods provide
accurate descriptions of electronic states, enabling the study of
chemical bonding, reactivity, and charge distribution at an atomic
level, which is essential for understanding drug metabolism and
interactions. By combining the advantages of molecular me-
chanics to balance accuracy and computational efficiency, the
application of QM has also been expanded, and it helps in
calculating descriptors and physicochemical properties that are
vital for ADMET predictions'’'. MD simulates the motion of
atoms and molecules over time to provide insights into the
behavior and structure of drug delivery systems at the molecular

doi.org/10.1016/j.apsb.2025.09.022

Please cite this article as: Wu Yiyang et al., Artificial intelligence for drug delivery: Yesterday, today and tomorrow, Acta Pharmaceutica Sinica B, https://




Artificial intelligence for drug delivery

17

level'® "% facilitating the optimization of drug loading,
controlled release, and interactions with biological membranes' 2.
Al techniques not only have powerful predictive capabilities but
also generate novel molecular structures with desired properties,
accelerating the drug discovery process and targeted delivery. This
hybrid approach leverages the strengths of Al to enhance the ca-
pabilities of QM and MD methods, which are crucial for under-
standing molecular interactions and predicting the behavior of
biological systems®.

AI-QM/MD modeling substantially impacts the development
of nanoscale drug delivery vehicles. For instance, cell-penetrating
peptides (CPPs) hold significant therapeutic potential in drug
delivery, yet the diversity of known CPPs remains relatively
limited. Then, a series of CPPs with different structures was
generated based on deep generative models. Meanwhile, MD
simulations were employed to gain mechanistic insights and pri-
oritize Al-generated peptides for further analysis. Then the top-
scoring peptides were validated through wet-lab experiments,
resulting in CPPs with better permeability and weaker toxicity.
This study not only demonstrates how MD simulations can sup-
port de novo peptide design but also proposes a screening pipeline
with low cost and high accuracy'®’. A similar case study using
MD simulations was also found in the rational design of liposomal
drug formulation due to their superior biocompatibility, biode-
gradability, and ability to provide controlled release and targeted
delivery'®*. The results showed that in both passive and active
liposome loading systems, protonation of drug molecules reduces
their binding to phospholipid membranes and alters vesicle
morphology in multivesicular liposomes, while maintaining the
orientation of hydrophobic parts inward and hydrophilic parts
outward; however, in active loading systems, the presence of ions
within the liposome cavity enhances drug retention and release
profiles by promoting drug self-aggregation. Therefore, MD
simulations can validate the optimal liposome formulation pre-
dicted by Al before experimental testing, which will significantly
enhance mechanistic understanding while reducing experimental
costs. Moreover, Al models can predict drug toxicity, bioactivity,
and physicochemical properties, essential for designing effective
drug delivery systems'®>'°”. Therefore, combining Al with QM
and MD methods will improve predictions’ accuracy by
leveraging each approach’s strengths, accelerating the drug dis-
covery and delivery process.

When developing AI-QM/MD modeling, several caveats must
be considered to ensure accurate, reliable, and efficient outcomes.
QM methods require highly sophisticated algorithms and sub-
stantial computational resources, remaining a significant hurdle to
handling large datasets and complex molecular systems'*®'"’.
Current QM/MD simulations are limited by the short time scales
they can cover, which restricts their application in studying long-
term molecular interactions and dynamicszm. Moreover, extensive
validation is required to ensure the accuracy and reliability of Al-
QM/MD models.

5.2.3.  Self-driving Al laboratories (AI-SDLs)

Self-driving laboratories (SDLs) represent a breakthrough in sci-
entific research, with significant applications in chemistry and
drug delivery””. These laboratories integrate automation, artificial
intelligence, and advanced computing to accelerate the discovery
and development of new drug molecules and delivery materials*’”.
Specifically, SDLs are equipped with automated experimental
setups that can perform a wide range of tasks. By combining the

advantages of robotics and advanced Al algorithms, SDLs can

perform high-throughput experiments, exploring a larger chemical
space more efficiently and with less labor-intensive processes.
This capability is crucial for rapidly identifying promising
candidates.

Al algorithms in SDLs generate hypotheses based on prior
experiments, establishing a feedback loop that reduces the number
of experiments required for discovery. Thus, this approach en-
hances the precision and effectiveness of research. For example,
SDLs can autonomously optimize the DNA purification process
with minimal human intervention, leading to significant im-
provements in yield and purity of the product””®. SDLs can also
facilitate collaboration by enabling distributed experimentation
and data sharing across institutions. This is exemplified by pro-
jects like The World Avatar, which links laboratories globally for
real-time collaborative optimization®”. In the future, Al-powered
labs can conduct iterative tests to optimize drug release kinetics
for sustained or targeted delivery. Furthermore, Al-driven SDLs
can rapidly design, execute, and analyze experiments to identify
optimal formulations for drug delivery systems. For example,
thousands of polymers or ionizable lipid types and conditions can
be rapidly screened by AI-SDLs to determine the best carriers or
formulation for controlled drug release.

Despite their autonomy, SDLs still require human oversight to
ensure progress towards research goals. Integrating human intui-
tion with AI's capabilities is crucial for the success of SDLs”".
Another challenge is the time required to adapt SDLs to new
studies. Effective SDLs must be designed to work faster than
automation alone and be readily adaptable to new research
areas’’®. In summary, the Al-powered SDLs are poised to trans-
form scientific research by leveraging automation, Al, and
advanced computing. While there are challenges to overcome, the
potential benefits of accelerated discovery and efficiency make
AI-SDLs a promising development in the scientific community.

5.2.4.  Al-process simulation

Process simulation is widely used in the pharmaceutical industry
to model, analyze, and optimize drug manufacturing processes.
Simulating complex workflows and equipment behaviors helps
reduce costs, improve efficiency, and ensure quality. However,
traditional process simulation tools often face limitations such as
requiring extensive domain expertise from formulation scientists,
lacking standardized simulation methods for various formulations,
and being constrained by computational inefficiencies, incomplete
data, and expensive commercial software. With such a dilemma,
Al enhances process simulation by enabling more accurate pre-
dictions through machine learning models trained on large data-
sets. It can optimize parameters and adapt simulations in real-
time. Al also reduces reliance on manual adjustments, accelerates
decision-making, and improves handling of uncertainties, leading
to more robust and efficient pharmaceutical manufacturing
processes.

Some case studies of process simulation in the pharmaceutical
field have been summarized®®’. Briefly, discrete element model-
ling (DEM) was introduced and used to simulate diffusion-
induced swelling and shrinkage of deformable particles,
enabling the capture of the microstructural evolution of individual
particles””®. Despite powerful advantages, DEM struggles to scale
effectively to industrial systems with huge particle counts due to
the exponential increase in computational demand. Integrating
DEM with Computational Fluid Dynamics (CFD) is a powerful
simulation approach for studying particle-fluid interactions at
micro and macro scales, bridging the gap between lab-scale
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experiments and industrial-scale production””. For example, a

coupled CFD-DEM approach was utilized to study powder
dispersion mechanisms in pharmaceutical dry powder inhalers,
with the Aerolizer® serving as a model device”'®. Then the study
revealed that shear stress from turbulent flow did not significantly
affect powder dispersion, and agglomerate-agglomerate in-
teractions occurred only after the agglomerates were ejected from
the capsule. Therefore, this work highlighted the effectiveness of
CFD-DEM modeling in studying dispersion mechanisms and
provided valuable insights for future improvements in inhaler
device design. Additionally, this hybrid technique is particularly
valuable in pharmaceuticals, where processes such as granulation,
mixing, drying, and fluidized bed operations involve complex
particle-fluid interactions. However, high computational resources
are still required, especially for large-scale systems with many
particles, making the accelerated computing and coarse grid
simulation necessary”''.

The utilization of Al for accelerating process simulations has
demonstrated significant potential to drastically reduce simulation
times while enhancing the accuracy and efficiency of predictions.
For instance, a study proposed the Graph Neural Network-based
Simulator (GNS) integrated with inverse design to optimize DEM
parameters for granular flow simulations®'?. The GNS model,
trained on high-fidelity DEM datasets, achieves superior predic-
tive accuracy and generalization across solid dosage
manufacturing process design®'’. Compared to traditional design
of experiment methods, the GNS approach demonstrates enhanced
computational efficiency and dynamic optimization of complex
parameter interactions. A joint framework by integrating AI-CFD-
PBPK modeling has also been proposed and applied to the
development of various inhaler types such as nebulizers, pres-
surized metered-dose inhalers, soft mist inhalers, and dry powder
inhalers, as well as in inhaled drug formulations®'*. This hybrid
model shows great potential in predicting drug deposition in the
human respiratory tract and using PBPK modeling to understand
drug dissolution and absorption. Additionally, efforts have been
made to investigate the relationship between solid dosage forms’
disintegration and dissolution behaviors and the formulation
optimization of pharmaceutical products by leveraging advanced
AI algorithms like deep learning®®*'>. These initial results high-
light the Al method’s advantages in computational speed and its
ability to handle complex systems. This represents a significant
advancement in computational techniques for process simulation
and real-world problem-solving.

5.3.  Challenges and future perspectives

5.3.1
delivery
Integrating Al with other advanced techniques is revolutionizing
smart drug delivery, significantly enhancing precision, efficiency,
and personalization in therapeutic interventions. By leveraging
Al-driven insights, researchers can optimize drug formulations,
design targeted delivery systems, and adapt treatments in real
time, ultimately improving patient outcomes and minimizing side
effects. Despite the promising outlook, AI still faces several
challenges in achieving its goals, as mentioned earlier.

Current challenges of applying Al models in drug

5.3.1.1.  Challenges in data sharing and privacy preservation.
Data quality and availability issues are critical to developing
reliable Al models. Datasets in drug delivery are typically

characterized by scarcity, imbalance, and high complexity, while
simultaneously facing severe data fragmentation. Such datasets
are distributed across various institutions and organizations,
creating numerous data silo, preventing effective integration of
valuable information for model development.

To address the data issues, multiple data-sharing platforms and
initiatives have been established globally. For instance, the Global
Alliance for Genomics and Health (GA4GH) promotes sharing
and standardizing genomic and health data’'®. The European
Common Data Space aims to unlock the vast potential of data-
driven innovation by enabling secure and trusted data exchange
across the EU?'". In the United States, the National Cancer In-
stitute’s (NCI) Cancer Moonshot initiative has developed the
Cancer Research Data Commons (CRDC), integrating cancer data
from various institutions into a shared platform®'®. Scholars in
related fields also advocate for open data®'**?°, with increasing
numbers of researchers required or voluntarily opting to share
their data and code transparently and accessibly. However, barriers
to data sharing persist, including data heterogeneity, privacy
concerns, and issues of ownership22'.

Alongside the advancement of data sharing initiatives,
ensuring the privacy and security of patient data is also a signif-
icant concern that needs to be addressed when implementing Al in
drug delivery systems'®”. The sensitive nature of health data ne-
cessitates robust security measures to prevent unauthorized access
and breaches. Implementing advanced encryption techniques and
secure data storage solutions is fundamental to safeguarding pa-
tient information in Al-driven drug delivery systems. Regulatory
bodies also play a crucial role in overcoming these challenges. For
instance, the FDA introduced the Knowledge-Aided Assessment
and Structured Application (KASA) initiative to promote struc-
tured information sharing’®?. Additionally, some regulatory
guidelines and laws, including the Health Insurance Portability
and Accountability Act (HIPAA) and General Data Protection
Regulation (GDPR), have been proposed to govern the privacy
and security of personal health information. These frameworks
mandate stringent data protection practices, including anonym-
ization, pseudonymization, and obtaining informed patient con-
sent, ensuring compliance with legal and ethical standards.
Together, these measures aim to build a trustworthy environment
for Al applications in drug delivery, essential for developing
abundant, high-quality, standardized, and reliable datasets for
further advancements in computational modeling®*’.

5.3.1.2.  Challenges in model transparency and inter-
pretability. The lack of transparency in Al models remains one
of the major challenges for their clinical and commercial appli-
cations. Currently, many models are still considered “black
boxes”. It is difficult for clinicians and regulatory authorities to
understand the basis of model predictions, reducing their reli-
ability and practical value. Enhancing model interpretability is
thus crucial to establishing the trust necessary for deployment in
clinical and commercial settings.

To address this challenge, advanced Al algorithms and tools
with enhanced interpretability have been developed. Furthermore,
the integration of interdisciplinary subjects and Al, such as Al-
PBPK and AI-QM/MD modeling, holds significant potential for
improving the interpretability of AI***. By combining the pre-
dictive power of Al with the mechanistic insights provided by
these scientific models, researchers can better understand and
validate the underlying processes driving Al predictions. This
synergy not only improves the transparency of Al systems but also
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fosters trust by linking Al-driven outcomes to established scien-
tific principles.

5.3.1.3.  Challenges in Al model deployment and user
accessibility. Despite the increasing application of Al technol-
ogies in drug delivery, current Al models face significant us-
ability challenges. While many models are successfully
developed, their broader application and development are often
hindered by limited deployment capabilities, making it difficult
for users to utilize them effectively. By integrating Al-driven drug
delivery systems, patient monitoring, and personalized treatment
planning®’, user-friendly platforms may feature intuitive in-
terfaces that allow patients and healthcare providers to access
real-time insights into drug efficacy and health outcomes.
Expanding beyond individual platforms, an intelligent ecosystem
covering the entire drug development pipeline is gradually
becoming operational. In the upstream drug discovery phase,
advanced Al algorithms are extensively applied to molecular
generation, target identification, and virtual screening, signifi-
cantly enhancing the success rate and efficiency of drug devel-
opment®*°. In the downstream phases of clinical trials and patient
care, Al optimizes trial designs, patient stratification, and real-
time data analysis, improving trial efficiency and the personali-
zation of therapeutic strategies®>”. The molecular data generated
in the upstream research stage serve as a foundation for Al-driven
drug delivery. In contrast, the vast amounts of real-world data
(RWD) accumulated in downstream clinical trials become valu-
able resources for further refining drug delivery Al models. This
ecosystem not only shortens drug development timelines and
reduces costs but also lays a solid foundation for personalized
medicine and precision therapy. It signifies the advent of a fully
intelligent paradigm for Al-driven drug development, ushering in
a new era of innovation.

Besides the limitations in data quality, model transparency, and
usability, the validation of Al models’ effectiveness and safety
requires substantial time accumulation. In drug delivery, the
validation of model predictions typically relies on long-term real-
world data support, and the acquisition and verification of such
data necessitate rigorous clinical trials and regulatory approvals,
which directly lead to delays in clinical implementation and
commercialization. Nevertheless, regulatory authorities world-
wide are taking proactive measures, as exemplified by the FDA,
Health Canada, and the Medicines and Healthcare products Reg-
ulatory Agency (MHRA) jointly establishing ten guiding princi-
ples to support the safe and efficient application of Al in medical
devices, with explicit emphasis on model transparency and inter-
pretability”®®. As these regulatory frameworks continue to
improve and technological innovation deepens, Al-based drug
delivery systems are expected to gradually overcome these bot-
tlenecks, providing robust technical support for precision medi-
cine and personalized treatment.

5.3.2.  Talent and education development

Currently, the pharmaceutical field faces a critical shortage of Al
talent, creating an urgent need for comprehensive training pro-
grams to bridge this gap. Regarding talent cultivation, the demand
for interdisciplinary professionals is skyrocketing, which requires
knowledge input from machine learning, data science, and
domain-specific pharmaceutical sciences. Professionals with
traditional pharmaceutical backgrounds are supplementing their
knowledge with expertise in computational science and artificial
intelligence, while data scientists and Al engineers are learning

about the unique requirements of the pharmaceutical industry
through courses in medicinal chemistry and pharmacokinetics.
Increasingly, universities and research institutions are offering
courses or research projects related to Al-driven drug develop-
ment, fostering a new generation of interdisciplinary talent with
both theoretical foundations and industrial perspectives, injecting
fresh energy into the sustainable development of the pharmaceu-
tical industry. In brief, training should include practical applica-
tions of Al in drug formulation and clinical trials. Students should
be exposed to Al platforms and tools used in the pharmaceutical
industry, such as data mining, high-throughput screening, and
simulation tools.

Additionally, introducing computational pharmaceutics cour-
ses in universities holds significant importance for the future of
pharmaceutical science. As the pharmaceutical industry increas-
ingly relies on advanced computational tools and Al to accelerate
drug development, optimize formulations, and enhance drug de-
livery systems, equipping students with these skills is essential for
the future. For example, a graduate course named “Computational
Pharmacy” has been established and conducted at the University
of Macau since 2015, and the “Computational Pharmaceutics”
course has also been introduced at Uppsala University in Sweden
since 2021. Meanwhile, the reference book on computational
pharmaceutics, first published in 2015, has released its second
edition this year (2024)'°'7°. Top universities in China have
gradually started establishing artificial intelligence schools this
year, equipped with professional faculty and facilities. Such ef-
forts and courses prepare future researchers to harness computa-
tional models for predicting drug behavior, analyzing complex
biological interactions, and designing innovative drug delivery
systems. By integrating computational pharmaceutics into the
curriculum, universities can nurture a new generation of experts
capable of driving innovation and shaping the future of smart drug
delivery and personalized medicine.

5.3.3. Culture and collaboration

Capital market enthusiasm has significantly accelerated the
development of Al-driven drug delivery systems, as Al pharma-
ceutical companies increasingly capture the attention of investors
eager to support innovative healthcare solutions. However, this
rapid advancement has also brought various cultural and ethical
issues, including concerns about data privacy and security, bias in
Al models due to non-representative datasets or fake data, and the
accountability and transparency of Al systems in medical deci-
sion-making®*’.

To address these issues, it is essential to implement robust
regulations, develop diverse and inclusive datasets, and establish
clear accountability for Al decision-making. Firstly, stringent
regulations must be enacted to protect patient data, guaranteeing
that personal information is handled securely and transparently.
Secondly, a clear framework for accountability must be devel-
oped, delineating the responsibilities of Al developers, healthcare
providers, and regulatory bodies in case of errors or adverse
outcomes associated with Al systems. Thirdly, stakeholders
should collaborate to create initiatives that promote equal access
to Al-enhanced therapies, particularly for underserved pop-
ulations. Additionally, global collaboration is essential for
harmonizing ethical standards and regulations, while investments
in education and training are crucial for bridging the gap between
Al advancements and clinical practice. By focusing on these
principles and measures, Al in smart drug delivery can achieve
ethical integrity and cultural sensitivity, ensuring that these
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remarkable advancements benefit all patients equitably and
responsibly.

Meanwhile, close collaboration among academia, industry, and
regulatory agencies drives coordinated innovation across the
sector. Academia supports cutting-edge theories and technological
breakthroughs, industry translates these achievements into prac-
tical products, and regulatory agencies ensure the safety and ef-
ficacy of innovative outcomes through scientific policies and
standards. This tripartite collaboration not only accelerates the
maturation of Al-driven drug development technologies but also
propels the entire industry toward greater standardization, scien-
tific rigor, and globalization. The future of Al in drug delivery will
benefit from increased collaboration between Al researchers,
pharmaceutical companies, and regulatory bodies. This collabo-
rative approach can help address current challenges and accelerate
the development of innovative drug delivery systems.

Despite the numerous challenges that remain, the future per-
spectives are promising. Addressing these challenges through
innovative solutions and regulatory advancements is crucial for
successfully integrating Al in smart drug delivery systems, ulti-
mately leading to more efficient, personalized, and effective
treatments in the future.

6. Conclusions

Through this review, we have explored how Al applications have
evolved from simple predictive models to advanced algorithms
capable of handling complex delivery challenges. It is evident that
Al techniques have served as effective tools in modern pharma-
ceutical research. Driven by improvements in computational
power, algorithms, and the expanding volume of pharmaceutical
data, the synergy between Al and drug delivery research will
continue to strengthen. Emerging technologies such as LLMs and
multidisciplinary collaboration between Al and other technologies
hold great promise for more efficient development pipelines and
personalized drug delivery. To fully realize this potential,
comprehensive talent training and education are essential. As Al
tools become more accessible and useable, there has never been a
better time for pharmacy researchers to embrace these technolo-
gies to enhance their research workflows.
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