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Abstract The global pharmaceutical drug delivery market is forecasted to grow to USD 2546.0 billion 

by 2029. The expanding pharmaceutical market urgently needs a more efficient drug research and devel-

opment paradigm. Artificial intelligence (AI) is revolutionizing drug delivery by offering alternatives to 

traditional trial-and-error experimental approaches. This review systematically traces the technological 

evolution from early simple models to current advanced AI algorithms in various applications, ranging 

from formulation optimization to the prediction of critical formulation parameters and de novo material 

design. To enhance the reliability of AI applications in drug delivery, we present comprehensive guide-

lines and “Rule of Five” (Ro5) principles to systematically direct researchers in utilizing AI in formula-

tion development. This “Ro5” includes the following criteria: a formulation dataset containing at least 

500 entries, coverage of a minimum of 10 drugs and all significant excipients, appropriate molecular rep-

resentations for both drugs and excipients, inclusion of all critical process parameters, and utilization of 

suitable algorithms and model interpretability. The review concludes with insights into emerging trends 

and future directions, including the utilization of large language models, multidisciplinary collaboration 

opportunities, talent development, and culture transformation, aimed at facilitating a paradigm shift to-

ward AI-driven drug formulation development.

This article is part of a special issue entitled: Hot Topic Revs in Drug Delivery published in Acta Pharmaceutica Sinica B.
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1. Introduction

Drug delivery is a critical step in transforming active pharma-

ceutical ingredients (APIs) into clinically applicable dosage 
forms, which helps to optimize the pharmacokinetics (PK) and 
pharmacodynamics (PD) properties of drugs 1,2 . As the difficulties 
and cost of producing new molecular entities (NMEs) continue to 
increase 3 , the importance and promise of drug delivery continue to 
grow. The global pharmaceutical drug delivery market is fore-

casted to grow from USD 1949.4 billion in 2024 to USD 2546.0 
billion by 2029, expanding at a compound annual growth rate

(CAGR) of 5.5% 4 .
Modern drug delivery technology has evolved significantly 

over the last seven decades since SmithKline successfully intro-

duced the first 12-h controlled-release formulation using 
Spansule ® technology in 1952 5 . The evolution can be observed in 
three key dimensions: First, therapeutic agents have evolved from 
traditional small-molecule APIs to include biomolecules such as 
peptides, proteins, and nucleic acids, as well as cell therapies. 
Second, delivery systems have diversified, from conventional 
tablets, capsules, and injections to advanced delivery systems such 
as microspheres, liposomes, and nanoparticles. Third, delivery 
goals encompass not only optimizing the controlled drug release 
but also incorporating the requirements of target delivery and 
personalized delivery.

The principle of drug delivery is multi-task optimization from 
a high-dimensional space based on material attributes and process 
parameters 6 , with an estimated formulation design space between 
10 25 and 10 30 . However, the drug delivery paradigm largely de-

pends on traditional trial-and-error experimental approaches. The 
inefficient methodology relies heavily on researchers’ experience 
and intuition to explore a minute fraction of a vast design space, 
resulting in significantly prolonged development timelines and 
huge expenses. From 2010 to 2019, drug development averaged 
8.7 years from Investigational New Drug (IND) filing to New 
Drug Application (NDA) approval 7 . The mean cost to develop a
new drug was estimated at $879.3 million (2018 dollars) 8 .
Furthermore, while the pharmaceutical industry has evolved to 
accumulate a wealth of valuable data, traditional research and 
development (R&D) methods lack effective tools to leverage it 
fully, potentially overlooking critical information. Given these 
challenges, more cost-effective development strategies are ur-

gently required to accelerate drug R&D processes.

Artificial intelligence (AI), which refers to the simulation of 
human intelligence by machines that can learn from existing data 
and adapt to new inputs, has significantly developed since its 
origin in the 1950s. Although it experienced several downturns, AI 
has ushered in an explosive research boom since the AlexNet 
model won the ImageNet competition in 2012 9 . Powered by the 
advances and the convergence of big data, advanced algorithms, 
and computing resources, AI has achieved remarkable success 
across various fields. The 2024 Nobel Prize in Physics and 
Chemistry was awarded for AI-related work, highlighting AI’s 
profound impact on science 10 . Attracted by the immense potential 
of AI techniques, more and more pharmaceutical companies are 
setting up divisions involving AI 11 . The major technology

companies such as Google and Microsoft, along with some AI-

focused startups, are also leveraging their expertise to inten-

sively pursue opportunities in biomedical fields 12 . The U.S. Food 
and Drug Administration (FDA) has further validated this tech-

nological transformation by recognizing and supporting AI’s role

in drug discovery and development 13 .

In recent years, there has been a dramatic growth in interest in 
the transformative potential of AI in drug delivery research. Fig. 1 
shows the publication of AI applications in drug delivery from 
2000 to 2024 based on the Web of Science (WOS) database. 
Before 2018, publications related to AI technologies remained 
few, but subsequently showed a striking upward trend, demon-

strating exponential growth over the following years and 
exceeding 500 publications in 2024. Table 1 presents the rankings 
of the top 10 countries, affiliations with departments, journals, and 
hot topics in AI for drug delivery research based on publication 
output. Various AI techniques have been successfully applied to 
predict drug-excipient interactions 14,15 , optimize formulations for

various dosage forms 16,17 , predict critical process parameters 18 ,

and efficiently screen delivery materials 19 .

To address the growing importance of AI in drug delivery, this 
review systematically summarizes the evolution of AI applications 
in drug delivery, illustrating how AI is transforming the traditional 
research paradigm (Fig. 2). As AI applications in this field 
continue to expand rapidly, establishing robust methodological 
standards becomes crucial for ensuring reproducibility and 
enabling effective comparison of different AI techniques. This 
review proposes comprehensive guidelines to address this need, 
including a “Rule of Five” (Ro5) principle for developing reliable 
AI models in formulation prediction. Beyond these practical 
guidelines, this review further explores emerging trends and future 
directions, including the utilization of large language models, 
opportunities for multidisciplinary collaboration, talent develop-

ment, and culture transformation. By providing both practical 
methodological guidance and forward-looking perspectives, this 
review is a valuable starting point for pharmaceutical researchers 
seeking to incorporate advanced AI techniques into their research.

2. Early stage: initial applications of artificial intelligence 
before 2018

The applications of AI in drug delivery can be traced back to the 
early 1970s 20 . Over the following decades, researchers gradually 
explored AI’s potential in pharmaceutical formulation develop-

ment, which laid the ground for future development. This section 
provides an overview of these early applications, while 
Table 2 20—30 summarizes these efforts, highlighting how various 
computational tools were applied to different drug delivery sys-

tems during this formative stage.

2.1. Statistical models

Pharmaceutical research and development often revolve around 
solving optimization problems. The need for efficiency in phar-

maceutical development drove the transition from empirical
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practices to systematic approaches in drug delivery. Statistical 
models provided researchers with tools to identify relationships 
between formulation variables and outcomes.

A pioneering study conducted in 1973 20 exemplified the early 
adoption of statistical models in drug delivery, employing factorial

design and regression analysis to optimize tablet formulations. This 
study used a dataset of 27 samples with five variables as inputs, 
including diluent ratio, compression force, disintegrant levels, 
blinder level, and lubricant level. Through regression analysis, 
second-order polynomial predictive equations were derived and

Figure 1 The bar chart illustrates the temporal evolution of publication counts indexed in Web of Science from 2000 to 2024 (accessed January 

4, 2025) using the following keywords setting: ALL�(“artificial intelligence” OR “machine learning” OR “deep learning” OR “neural network” 

OR “expert system”) AND ALL�(“drug formulation” OR “pharmaceutical formulation” OR “drug delivery” OR “pharmaceutics”).

Table 1 Rankings of the top 10 countries, affiliations with departments, journals, and hot topics in AI-related pharmaceutics publications 

from the WOS database (based on the same search keyword setting as Fig. 1).

Rank a Country Affiliation with the 

department

Journal Hot topic

1 USA (448) Institute of Chinese medical 

Science, University of Macau 
(23)

Pharmaceutics (167) Solid dispersion (274)

2 China (431) Faculty of Pharmacy, 

University of Belgrade (17)

International Journal of 

Pharmaceutics (158)

Gene delivery (103)

3 India (222) School of Engineering, 
Massachusetts Institute of 

Technology (16)

Molecular Pharmaceutics 
(121)

Stratum corneum (63)

4 England (164) Faculty of Pharmacy, King 

Abdulaziz University (15)

Advanced Drug Delivery 

Reviews (46)

Protein folding (41)

5 Iran (121) College of Pharmacy, The 

University of Texas at Austin 

(14)

Journal of Drug Delivery 

Science and Technology (45)

Hydrogels (32)

6 Saudi Arabia (115) Faculty of Engineering, 

University of Waterloo (14)

European Journal of 

Pharmaceutics and 

Biopharmaceutics (42)

Exosomes (28)

7 Germany (96) Faculty of Science, 
University of Waterloo (14)

Journal of Controlled Release 
(30)

Gene expression data (26)

8 South Korea (91) College of Pharmacy, King 

Saud University (13)

Journal of molecular Liquids 

(20)

Dry powder inhaler (25)

9 Spain (88) College of Design and 
Engineering, National 

University of Singapore (13)

Scientific Reports (20) Silver nanoparticles (25)

10 Canada (74) School of Pharmacy, Tehran 
University of medical 

Sciences (13)

Advanced materials (14) Supercritical carbon 
dioxide (23)

a The rankings of countries, affiliations with departments, journals, and hot topics are independent of each other and there is no direct corre-

spondence across columns. The numbers in parentheses indicate the publication count for each entry.
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optimized using feasibility and grid search methods. The pre-

dictions showed excellent agreement with experimental results in 
disintegration time, tablet hardness, dissolution rate in 30 min, and 
thickness, illustrating the effectiveness of integrating statistical 
modeling with computational optimization tools. Using graphical 
techniques such as response curves and contour plots further 
enhanced the understanding of the formulation system. Regression 
analysis was also employed to optimize the formulation variables of 
griseofulvin/hydroxypropyl cellulose solid dispersions and

flufenamic acid/polyvinylpolypyrrolidone/methyl cellulose solid

dispersions for high dissolution rates and stability 31,32 .

Partial least squares (PLS) regression can effectively handle 
multicollinearity in datasets, while simultaneously modeling 
multiple response variables and managing situations where pre-

dictors outnumber observations. Bergström et al. 25 first introduced 
experimental and computational screening models for predicting 
aqueous drug solubility. They generated high-quality experimental 
data by developing a miniaturized shake-flask method to measure

Figure 2 Evolution of computational methods in drug delivery.

Table 2 Early representative computational applications in drug delivery.

Year Computational

method

Dosage form Dataset Objective Ref.

1973 Factorial design Tablet 27 data (1 API and 1 
excipient)

Predict disintegration time, tablet 
hardness, friability, weight, 

thickness, porosity, mean pore 

diameter, and dissolution (% at 

30min).

20

1990 Expert system Aerosols, 

capsules, 

granulates, 

injection 
solutions, and 

tablets

Not mentioned Carrying out ‘theoretical 

experiments’ by the computer using 

galenical knowledge before testing 

drug products in practical 
experiments

21

1991 RSM and ANN Matrix capsule 23 data (1 API and 4 

excipients)

Predict release exponent N and the 

dissolution half-time T 0.5

22

1998 ANN Sustained-release 

matrix tablets

3 data (1 API and 1 

excipient)

Establish in vitro—in vivo correlation 

(IVIVC)

23

2000 ANN Osmotic pump 
tablets

30 data (1 API and 2 
excipients)

The drug release rate and the 
correlation coefficient

24

2002 MLR and PLS Pure drug 17 data (17 drugs) Predict intrinsic solubility 25

2003 PLS Pure drug 23 data (23 drugs) Predict solubility and permeability 26

2006 Neurofuzzy logic

and neural 

networks

Immediate-release

tablet

205 data (1 API and 4
excipients)

Predict tablet tensile strength,

disintegration time, friability, 

capping, and drug dissolution rate 

(%) at 15, 30, 45, and 60 min.

27

2011 Expert system Osmotic pump 
tablets

Hundreds of PPOP 
data

Establish a formulation design model 
based on the prediction of release 

behavior

28

2014 RSM and ANN Solid dispersions 46 data (6 APIs and 1 
excipient)

Predict yield, outlet temperature, and 
mean particle size

29

2015 RSM and ANN Nanoparticles 18 data (1 API and 4 

excipients)

Predict particle size and loading 

efficiency

30

API, active pharmaceutical ingredient; ANN, artificial neural network; RSM, response surface methodology; MLR, multilinear regression; PLS, 
partial least square; PPOP, push—pull osmotic pump tablets.
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the intrinsic solubility of 17 compounds. These data were then 
analyzed using PLS to establish correlations between molecular 
descriptors such as lipophilicity (ClogP) and molecular surface 
area, with solubilities, resulting in a predictive model with the 
coefficient of determination (R 2 ) of 0.91.

PLS has also been used in predicting oral drug absorption 
classification based on molecular surface properties 26 . Based on a 
structurally diverse dataset of 23 drug molecules, the researchers 
combined experimental data such as pK a , logP oct, and Caco-2 
monolayer permeability with computationally derived molecular 
surface area descriptors to simultaneously predict solubility and 
permeability, enabling theoretical classification of drug absorption 
profiles. The resulting model demonstrated that these surface-

based descriptors could predict solubility and permeability with 
high accuracy, achieving 87% prediction accuracy for the 
solubility-permeability profile of the 23 compounds. Furthermore, 
the model achieved a prediction accuracy of 77% on an external 
test set comprising FDA-recommended standard compounds. 
These studies highlighted the value of integrating experimental 
and computational approaches to improve early-stage solubility 
and permeability predictions.

2.2. Expert systems

In the 1980s, expert systems were applied in drug delivery. Expert 
systems were designed to mimic human decision-making by 
integrating domain-specific knowledge into rule-based frame-

works. These systems relied on predefined rules derived from 
expert insights to generate predictions or recommendations.

One of the earliest documented applications of expert systems 
in pharmaceutical formulation was introduced in 1989, when 
Zeneca Pharmaceuticals UK and Logica UK developed the 
Product Formulation Expert System (PFES) 33 . Since then, similar 
systems have been developed in the 1990s. For instance, the 
Cadila System facilitated tablet formulation by leveraging 
knowledge of API properties, such as solubility, hygroscopicity, 
and dissolution rate 34 . Similarly, the Capsule System and Sanofi 
System 35 were designed to optimize hard gelatin capsule formu-

lations based on specific preformulation data. Zeneca Pharma-

ceuticals further extended the application of PFES to create expert 
systems for tablets, parenteral formulations, and film coating,

demonstrating its versatility across various dosage forms 36—38 .

Around the same period, the Boots Company introduced an expert 
system to aid in the formulation of creams and lotions, expanding 
the scope of AI in pharmaceutical development.

As technology evolved, expert systems expanded to include 
immediate-release and controlled-release formulations. For 
example, push-pull osmotic pump tablets (PPOPTs) benefited 
from AI-assisted expert systems that integrate predictive models 
with knowledge-based rules, enabling rapid prototyping and effi-

cient exploration of formulation options 28 . SeDeM Expert System, 
known as “Sediment delivery model”, was an innovative tool 
developed in 2005. Designed for direct compression tablets, it 
incorporated nearly all the critical physical parameters required to 
evaluate the compressibility of powdered substances 39 . The 
SeDeM expert system has since been widely applied to the pre-

formulation study of oral tablets such as cefuroxime axetil and 
paracetamol 40 . A notable extension of SeDeM is the SeDeM-ODT 
variant, explicitly tailored for orally disintegrating tablets (ODTs). 
This system assesses excipient and API mixtures for compress-

ibility and orodispersibility, introducing indices like the index of 
good compressibility and orodispersibility (IGCB). Such tools

facilitated the optimization of APIs, including ibuprofen 41—43 .

Importantly, SeDeM-ODT enabled simultaneous optimization of 
direct compression and disintegration properties, further 
enhancing formulation precision.

Another key development in this era was the Ontology-Based 
Expert System for Immediate-Release Tablets (OXPIRT) 44 . The 
OXPIRT system supported pharmacists by offering ingredient 
lists, manufacturing processes, lab-scale production steps, and 
equivalence validation with original drugs. It combined domain 
knowledge from guidebooks and patents, structured in ontology 
format, with production rules for calculations and process rec-

ommendations, effectively bridging traditional expertise with 
computational intelligence.

2.3. Artificial neural networks

Inspired by biological neural networks, artificial neural networks 
(ANNs) consist of interconnected layers of nodes that process 
information through weighted connections. This structure allows 
ANNs to model intricate input-output dynamics and capture 
complex, nonlinear relationships. ANNs can learn patterns from 
data, potentially offering advantages in handling certain types of 
variability in the data. In pharmaceutical development, ANNs 
have provided additional tools for modeling complex systems, 
complementing traditional approaches in areas such as formula-

tion optimization and process control.

A significant early application of ANNs in pharmaceutical 
development was reported in 1991, modeling and optimizing 
controlled-release hydrophilic matrix capsules containing mix-

tures of anionic and non-ionic cellulose ether polymers 22 . This 
study provided a comparative analysis of ANN and response 
surface methodology (RSM) to understand the relationships be-

tween formulation variables and drug release parameters. In their 
case study, ANN showed higher predictive accuracy for dissolu-

tion half-time in the validation datasets.

ANNs were also applied to establish in vitro‒in vivo correla-

tion (IVIVC). In 1999, a study 23 used dissolution profiles from 
two extended-release formulations to predict their corresponding 
in vivo PK behavior. 29 different ANN architectures were evalu-

ated, including feedforward neural networks, recurrent neural 
networks, and generalized regression neural networks (GRNN). 
The feedforward neural networks and GRNNs demonstrate the 
highest predictive accuracy in modeling the relationship between 
dissolution and in vivo PK profiles. This study underscored the 
potential of ANN in capturing the intricate dynamics of drug 
release and absorption.

Neurofuzzy logic represents a hybrid computational approach 
combining the pattern-recognition capabilities of neural networks 
with the interpretability of fuzzy logic. A comparative analysis of 
neurofuzzy logic and neural networks was conducted to model 
205 experimental data from immediate-release tablet formula-

tions 27 . Both methods effectively predicted tablet tensile strength 
and drug dissolution profiles. While neural networks exhibited a 
slight advantage in predicting unseen data, neurofuzzy logic 
provided an additional benefit by generating interpretable “if-

then” rules, offering deeper insights into formulation performance. 
In a subsequent study 45 , neurofuzzy logic with decision trees was 
compared for knowledge extraction from the same dataset. Both 
techniques successfully generated useful insights using “if-then” 
rules or decision trees. In a comparative modeling study 46 of 
developing direct compression formulations, neurofuzzy logic was 
evaluated against multiple linear regression using data from
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factorial design experiments. Neurofuzzy logic achieved lower 
normalized error rates and superior prediction accuracy for five 
output variables. Additionally, the derived fuzzy rules quantified 
the nonlinear relationships between formulation variables. These 
findings were consistent with statistical results while also 
revealing novel insights.

2.4. Limitations of early AI applications in drug delivery

Despite introducing innovative perspectives to the drug delivery 
field, early AI techniques failed to gain widespread attention at 
that stage due to several significant limitations, as summarized in 
Table 3.

One of the most critical barriers was data scarcity. In the early 
stage, the absence of publicly available formulation databases 
necessitated reliance on internal laboratory data. Many predictive 
models developed during this time were based on limited exper-

imental data (typically fewer than 100 formulations, each 
involving only a few drugs and excipients). The representation of 
drugs and excipients in these models was also insufficient. Early 
studies often relied on basic molecular descriptors and simple 
physicochemical parameters, failing to capture the intricate in-

teractions between APIs, excipients, and environmental factors 
such as pH and temperature. These limitations made it difficult for 
models to accurately predict phenomena like dissolution profiles, 
stability, and pharmacokinetic behavior across diverse scenarios. 
Moreover, the early AI models were inherently constrained by 
their design focus on specific datasets and narrowly defined 
problems, and rarely progressed beyond proof-of-concept studies 
in real-world pharmaceutical development.

3. Current stage: era of AI-powered drug delivery since 
2018

AI is ushering in a revolutionary era in drug delivery starting from 
2018. Powered by the exponential growth in pharmaceutical data 
availability, advanced AI algorithms, and unprecedented compu-

tational capacities, AI drives a critical research paradigm shift 
from traditional empirical methods to data-driven approaches.

This transformation is first characterized by continuously 
expanding data sources and structures, where diverse datasets 
spanning tabular, image, and text formats are integrated to 
enhance drug delivery strategies. The emergence of advanced 
learning algorithms has empowered researchers to harness this 
wealth of data in unprecedented ways, offering innovative solu-

tions to persistent challenges in pharmaceutical development. This 
section systematically examines the current state of AI-driven 
drug delivery, highlighting how the convergence of data growth 
and technological maturity is accelerating pharmaceutical 
research and development.

3.1. Data expansion and advances in data processing

With the advancements of AI-driven drug delivery, the diversity in 
data sources and structures continues to expand. In early applica-

tions, researchers tended to rely on curated in-house experimental 
data. Such datasets were often expensive to generate and limited to 
exploring narrow chemical or formulation spaces. With the 
development of data mining and big data analytics tools, compiling 
publicly available data, including literature, patents, and books, has 
become a common approach to expand datasets. Database research 
continues to increase as the importance of data surges in the era of 
AI. Classic databases in AI-driven drug development, such as 
DrugBank 47 , PubChem 48 , ChEMBL 49 , and OCHEM 50 , primarily 
focus on drug substances. In recent years, databases specific to 
drug delivery have also emerged, such as cyclodextrin-drug in-

clusion complex databases 51—53 , nanoparticle-related data-

bases 54,55 , drug-excipient interaction database 56 , self-emulsifying 
drug delivery system dataset 57 , and cross-linked polyester im-

plants dataset 58 . A recent notable work is a drug product database 
developed by Murray et al. 59 Recognizing that existing large-scale 
databases primarily focus on drug substances rather than pharma-

ceutical products, the authors employed a semi-automated 
approach to extract information on small-molecule drugs from 
the European Public Assessment Reports (EPARs) and constructed 
a machine-readable database. This database includes details such 
as administration route, dosage form, formulation information, and 
maximum clinical dose for each drug product. Furthermore,

Table 3 Comparison of early and current AI applications in drug delivery.

Aspect Early AI Current AI

Data volume Smaller datasets (typically <100 data 
samples)

Larger datasets (typically �500 data 
samples)

Formulation scope Limited to a few drugs and excipients � 10 drugs and all important excipients

Data representation Simple representation of drugs and

excipients (e.g., basic molecular descriptors)

Advanced molecular representations,

including molecular descriptors, molecular 

fingerprints, 3D conformations, molecular 

graphs, and text-based embeddings

Algorithms Basic statistical methods, expert systems, 
and simple neural networks

Advanced AI algorithms, including classic 
machine learning (e.g., LightGBM), deep 

neural networks, and advanced architectures 

such as transformers and generative models

Generalization Poor generalization, formulation 
optimization

Better generalization, formulation, and 
prediction

Interpretability Limited interpretability for neural networks Advanced algorithms and tools for model 

interpretability

Computational resources Restricted by limited computational power 
and infrastructure

Supported by cloud computing and high-

performance GPUs

3D, three dimension; AI, artificial intelligence; GPUs, graphics processing units.
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leveraging the constructed database, the authors developed AI 
models to evaluate drug-likeness, select excipients, and predict oral 
absorption fractions, thereby testing the utility of the dataset in 
providing valuable insights.

To reduce data costs and improve data homogeneity, novel 
experimental techniques are utilized to provide low-cost and high-

quality data for AI model development 18,60,61 . Compared to 
traditional drug formulation experiments, emerging experimental 
techniques―especially micro-scale high-throughput exper-

iments―require minimal material, feature high automation, and 
can generate large volumes of highly homogeneous data 62 . These 
techniques also excel in data-intensive acquisition and flexible 
experimental design, making them well-suited for integration with 
deep learning (DL) optimization and design frameworks. Common 
methods include microfluidics, continuous flow systems, 
multiwell-plate-based parallel reactor systems, and additive 
manufacturing 63,64 . Among these, microfluidics is widely applied 
in nanomedicine research. Microfluidic technology enables precise 
manipulation of fluids at the micrometer scale through micro-

channels or chambers to control, mix, react, and separate liquids 65 .

These systems, typically made of silicon, glass, or polymers, are 
cost-effective, require low sample volumes, and offer high effi-

ciency. Compared to conventional experimental methods, data 
generated by microfluidics are more consistent and reproducible, 
providing higher-quality training data for AI algorithms. Its high-

throughput nature significantly reduces data acquisition costs, 
facilitating the construction of larger datasets. For example, Eug-

ster et al. 18 used microfluidics to generate a dataset comprising 
over 1300 liposome formulations and developed an XGBoost 
model to predict liposome formation and size under varying pro-

cess parameters. The rapid experimental capabilities of micro-

fluidic platforms also shorten the validation cycle for AI 
predictions. Drug delivery strategies predicted by AI can be 
immediately tested in vitro using microfluidics, enabling quick 
adjustments to algorithms and model parameters. Therefore, such a 
closed-loop feedback mechanism can greatly enhance the effi-

ciency of AI-driven drug delivery. For instance, Ortiz-Perez et al. 66 

combined microfluidic formulation techniques, high-content im-

aging, and active learning strategies to design an integrated 
workflow. Using this modular platform, they developed poly 
(lactic-co-glycolic acid)-polyethylene glycol nanoparticles with 
high uptake rates in human breast cancer cells. Further insights into 
machine learning (ML) applications in microfluidics can be found 
in the review by Dedeloudi et al 67 . Beyond micro-scale high-

throughput experimental technologies, other emerging techniques, 
such as organ-on-a-chip systems 68 , can also play critical roles in 
exploring data for understanding drug delivery. These technologies 
share a common trait of overcoming the limitations of traditional 
experiments by generating high-throughput, high-precision, and 
highly sensitive experimental data with unique perspectives, thus 
facilitating AI-driven drug delivery.

Since drug delivery involves complex multiscale processes, 
advanced imaging technologies also provide multiscale data sup-

port. Imaging technologies refer to techniques that utilize princi-

ples of physics, chemistry, and biology to acquire structural,

functional, and dynamic information within biological systems 69 .

Commonly used imaging technologies include high-content im-

aging, spectroscopic analysis, and non-invasive biological quan-

tification techniques. For example, high-content imaging is a 
technology that integrates automated fluorescence microscopy, 
image analysis, and data processing 70 . It can provide rich quan-

titative information at the single-cell or tissue level, precisely

evaluating drug delivery systems’ targeting capability, release 
behavior, and biological effects. In the study utilizing active 
learning for high-throughput nanoparticle design 66 , high-content 
imaging was employed to automatically process wide-field fluo-

rescence images to quantify nanoparticle uptake. Based on scat-

tering caused by molecular vibrations, rotations, and other low-

frequency modes, Raman spectroscopy provides insights into 
molecular structure and composition. It plays a critical role in the 
characterization and real-time monitoring of drug release pro-

cesses 71 . Abdalla et al. 72 were the first to use Raman spectroscopy 
to characterize polysaccharides for building a machine learning 
model to predict drug release from polysaccharide matrices in the 
colonic environment. They found that the Raman peaks of 
glycosidic bonds were key features for predicting drug release. 
Other non-invasive imaging techniques include magnetic reso-

nance imaging (MRI), computed tomography (CT), and positron 
emission tomography (PET). These methods allow dynamic, 
quantitative imaging of biological systems without disrupting 
tissue structures 73 . Such technologies are particularly suitable for 
long-term in vivo observation of drug delivery processes, enabling 
real-time monitoring of drug behavior within organisms, reducing 
the use of experimental animals, and lowering data acquisition 
costs. In short, advanced imaging technologies offer multidi-

mensional information about the in vivo behavior of drugs and 
carriers and quantitatively assess drug delivery efficacy, which is 
critical for training and optimizing AI models.

As the unstructured and multimodal data in multi-scale drug 
delivery emerged and accumulated, efficient data processing 
methods have been developed to support data integration and 
analysis. Drug delivery involves multilevel, multiscale biological 
processes, ranging from drug-carrier interactions to the interplay 
between drug delivery systems and biological systems. Such a 
complexity results in highly nonlinear, multidimensional charac-

teristics in drug delivery data, which includes, but is not limited to, 
tabular data 74 (describing formulation, process, and experimental 
condition information), molecular graphs 75 (describing molecular 
structures), text formats 76 (describing drug structures or se-

quences), images 77 (depicting the appearance of drug products or 
in vivo drug distribution), and time-series data 78 (such as drug 
release kinetics and pharmacokinetic curves). Traditional feature 
extraction and machine learning methods often struggle to 
comprehensively analyze unstructured and multimodal data, 
limiting drug formulation design and optimization. Through the 
flexible combination of neural networks, deep learning can auto-

matically learn high-dimensional feature representations from 
large-scale complex data, making it particularly suitable for 
deciphering complex drug delivery processes. For example, nat-

ural language processing (NLP) 79 and computer vision (CV) 80 

technologies are used to process text and image data, respectively. 
In 2019, our group 74 pioneered the application of deep learning in 
pharmaceutical formulation predictions, achieving over 80% ac-

curacy in predicting the disintegration time of orally fast-

disintegrating films and the dissolution profiles of sustained-

release matrix tablets. Furthermore, data alignment and integra-

tion techniques, cross-modal learning, and multimodal deep 
learning frameworks have been developed to handle multimodal 
data 81 . For example, our group 82 combined graph-based networks 
and generative adversarial networks based on tabular representa-

tions to predict organic crystal structure, which is a critical solid-

state property for pharmaceutical development. Beyond this, deep 
learning methods have been effectively used to predict the struc-

ture of materials 83 , RNA 84 , and proteins 85 , which form the
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foundation of drug delivery research. Drug carrier development, 
involving material selection, structural design, and optimization, is 
one of the core tasks for drug delivery. Using convolutional neural 
networks (CNNs), researchers can analyze carrier morphology and 
structural characteristics from image data, identifying correlations 
between microstructures and drug release performance. For 
example, Hornick et al. 86 introduced the On-Demand Solid 
Texture Synthesis (STS) architecture, which generates 3D volu-

metric textures based on 2D exemplar texture images. This 
approach was applied to design formulations with desired critical 
quality attributes by leveraging representations of their micro-

structural features. The proposed AI method was validated using 
oral tablets and long-acting implantable formulations as examples. 
The drug release mechanisms are influenced by material structure, 
drug properties, and physiological environments, making it diffi-

cult for traditional kinetic models to describe complex drug 
release processes accurately. Deep learning offers new solutions to 
this challenge 87—89 . Data-driven drug release analysis methods can 
not only uncover the primary mechanisms of drug release but also 
provide theoretical support for the design of intelligent drug 
release systems. The in vivo behavior of drug delivery systems 
includes carrier distribution in blood circulation, accumulation in 
target tissues, cellular uptake, and release. Due to the complexity 
of biological systems, these processes are challenging to analyze 
using traditional modeling approaches comprehensively. Deep 
learning, combined with bioimaging techniques, provides power-

ful tools for studying the in vivo behavior of drug delivery sys-

tems. Deep learning-based image segmentation and feature 
extraction techniques can automatically identify the distribution of 
carriers in different tissues from in vivo imaging data and quantify 
their localization and drug release at the cellular level. For 
instance, Liu et al. 90 designed a 3D tumor-mimicking model with 
in vitro‒in vivo correlation for drug release. By analyzing 
spatiotemporal images of the in vitro model, a dual-attention 
U-Net trained GAN was employed for vessel segmentation and 
quantitative drug analysis to evaluate the spatiotemporal dynamics 
of drug release within solid tumors. In short, deep learning offers 
novel tools and perspectives for analyzing the complexities of 
drug delivery systems, driving the design and optimization of 
these systems to new heights.

3.2. Advanced learning strategies for limited data scenarios

Data sparsity is one of the biggest challenges in drug delivery due 
to the high cost of experiments, long data collection cycles, and the 
diversity of chemical space. These factors often lead to poor model 
generalization and unstable predictions. To address these limita-

tions, various advanced learning strategies have been developed to 
enhance model accuracy even with limited training data.

Ensemble learning is one of the effective strategies to address 
these challenges. Ensemble learning combines the predictions of 
multiple sub-models to reduce the bias and variance of individual 
models 91 . By leveraging diversity, it mitigates the risk of over-

fitting and improves the overall predictive performance, robust-

ness, and generalization capability of the model to unseen data, 
laying the foundation for the maturity of AI-driven drug delivery 
research. Several studies have reported that ensemble learning 
algorithms, such as Random Forest, XGBoost, and LightGBM, 
often exhibit superior predictive performance and stability when 
handling tabular data in drug delivery 92 . In a study on drug-

excipient compatibility prediction 93 , the authors used a stacking-

based model integration strategy, demonstrating that the stacked

model outperformed individual models in predictive capability. 
Similarly, Deng et al. 94 compared the performance of 14 machine 
learning algorithms in developing predictive models for the 
dissolution curves of microsphere formulations. They identified 
four models based on different assumptions that offered superior 
predictive performance. Furthermore, the authors employed a 
voting-based ensemble strategy to construct a consensus model, 
effectively reducing prediction errors in both the initial release 
phase and the plateau phase of the dissolution curves.

To overcome data scarcity challenges, transfer learning and 
multitask learning enhance model performance by sharing infor-

mation across domains and related tasks. Transfer learning lever-

ages knowledge learned from pre-trained models in source 
domains and transfers it to target domains, making it particularly 
suitable for tasks with limited data but similar structures or 
patterns 95 . For example, the pre-trained molecular representation 
models can capture deep insights into molecular structures from 
large-scale molecular databases like PubChem or ChEMBL, which 
are then fine-tuned for specific tasks, such as molecular property 
prediction 96 . Multitask learning can simultaneously optimize ob-

jectives for multiple related tasks, enhancing performance on each 
task through shared representation learning 97 . Related tasks such as 
stability, drug loading efficiency, and targeted release performance 
can be jointly modeled in drug delivery. By sharing information 
across tasks, multitask learning enables robust predictions even 
under data-sparse conditions. Demonstrating the synergistic po-

tential of these approaches, our group 98 developed a unified 
framework in 2018 that integrated both transfer learning and 
multitask learning for predicting key pharmacokinetic parameters.

Active learning significantly accelerates model development 
by strategically selecting the most informative samples for label-

ing, achieving high model performance with minimal experi-

mental data requirements 99 . In drug delivery, active learning can 
start with just a few experimental data points and guide experi-

mental design by prioritizing the selection of the most represen-

tative or uncertain drug molecules for experimental validation. 
This approach incrementally expands high-value datasets, reduces 
data wastage, and improves model accuracy and reliability. 
Rakhimbekova et al. 100 compared various active learning pro-

tocols in designing peptide-binding polymers and studied factors 
such as the initial training set size and task complexity on active 
learning performance. Using the best-performing active learning 
method, the authors efficiently designed novel peptide-binding 
polymers and validated them experimentally. This comprehen-

sive and detailed work is a benchmark for using active learning to 
accelerate drug delivery system development.

Additionally, in drug delivery, challenges may arise from 
missing data labels, such as in positive-unlabeled learning sce-

narios, where negative samples are unavailable. In our recent 
work 101 , a semi-supervised learning framework was designed to 
address the issue of missing negative samples in formulation 
strategy decision-making tasks, and based on this framework, we 
developed the first AI system named FormulationDT for drug 
formulation strategy design, as illustrated in Fig. 3. 
FormulationDT covers multiple decision-making steps with a total 
of 12 machine learning classification models, achieving an 
average area under the receiver operating characteristic curve 
(ROC_AUC) score above 0.90. In short, through efficient adap-

tation, knowledge transfer, chemical space navigation, and task 
collaboration, advanced AI learning strategies not only improve 
model performance but also lay the foundation for a paradigm 
shift towards computer-driven drug development.
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3.3. Deep learning driving the paradigm shift of AI-powered 
drug delivery

Drug delivery research essentially involves multi-objective opti-

mization (e.g., delivery efficiency, side effects, stability, cost-

effectiveness) in a high-dimensional space composed of material 
properties and process parameters to achieve the ideal response 
from biological systems 102 . In early studies, statistics-based 
Design of Experiments (DoE) methods were commonly used by 
formulation scientists as a tool for formulation optimization. 
However, such methods are limited to explaining linear or low-

dimensional nonlinear relationships between variables and re-

sponses within a narrow design space, making them ineffective in 
navigating high-dimensional nonlinear spaces. The powerful 
feature extraction capability and flexible neural network archi-

tectures of deep learning enable it to adapt to multimodal data and 
diverse tasks, providing strong driving forces for solving complex 
problems in the drug delivery field.

Deep learning-based methods can efficiently navigate the 
complex design space of pharmaceutical formulations and pro-

cesses to identify optimal solutions. A typical example is the work 
by Li et al. 30 , who optimized Verapamil hydrochloride polymer‒ 
lipid hybrid nanoparticles (PLNs). In this study, neural networks 
demonstrated superior data fitting performance compared to 
response surface methodology and were further combined with a 
continuous genetic algorithm to optimize the drug loading effi-

ciency and mean particle size of the PLNs. Sano et al. 103 reviewed 
the application of Bayesian optimization in drug development, 
demonstrating its effectiveness in reducing experimental trials and 
improving optimization efficiency compared to traditional DoE 
approaches. Reinforcement learning (RL) is a machine learning 
paradigm specifically designed for optimization tasks 104 , aiming 
to learn a policy through interactions between an agent and 
the environment to maximize cumulative rewards. Currently, RL 
is more commonly used for optimizing drug administration 
methods and dosage regimens 105,106 . Based on the principles of

reinforcement learning, it can also be applied to optimizing drug 
delivery systems 107 and dynamically adjusting manufacturing 
processes 108 , provided that a suitable environment is designed to 
enable efficient and low-cost interactions. For instance, re-

searchers have developed algorithms using reinforcement learning 
strategies to plan the optimal path for nanorobots delivering drugs 
to tumor sites 107 . The proposed method can dynamically optimize 
delivery paths when tumor locations in patients change, demon-

strating high decision-making efficiency and low error rates.

In addition to prediction and optimization tasks, deep learning 
holds potential for further drug delivery design. The design tasks 
in drug delivery aim to deduce the ideal carriers or formulation 
combinations from desired properties (e.g., delivery efficiency, 
patient response). Compared to predictive tasks and optimization 
tasks confined within limited design spaces, design tasks in drug 
delivery have more disruptive innovation potential, encompassing 
scenarios such as functional excipients design and innovative 
formulations exploration. Functional excipients are auxiliary 
substances in pharmaceutical formulations that serve specific 
functions, playing a crucial role in optimizing drug performance 
or improving formulation quality. These include, but are not 
limited to, cyclodextrins, lipids, and polymers 109 . AI techniques 
have emerged as powerful tools in mRNA-LNP formulation 
development, particularly in designing ionizable lipids. For 
example, a recent work from our group 110 performed AI-driven 
virtual screening on a large-scale library of nearly 20 million 
lipids. By using developed machine learning models to predict 
two key properties of mRNA-LNPs (delivery efficiency and 
apparent pK a ), two iterations of screening were conducted. All six 
molecules from the second round matched or exceeded the 
benchmark DLin-MC3-DMA’s performance, with one achieving 
in vivo delivery efficiency comparable to the benchmark SM-102 
lipid used in the marketed mRNA-LNP vaccines. This demon-

strated the potential of AI technology for efficient screening of 
ionizable lipids from large-scale virtual libraries. The convergence 
of AI techniques with combinatorial chemistry is another design

Figure 3 The AI formulation strategy decision route and the application scenarios of FormulationDT. Adapted from Ref. 101 with permission 

from Elsevier; copyright © 2025 Elsevier.
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strategy for discovering novel ionizable lipids, aiming to enhance 
the delivery efficiency, safety, and organ specificity of 
LNPs 19,111—113 . Beyond screening virtual libraries, deep genera-

tive models offer a promising solution for inverse design. Com-

mon generative models include Generative Adversarial Networks 
(GANs), Variational Autoencoders (VAEs), and diffusion models. 
GANs operate through a competitive process between a generator, 
which generates data to mimic real samples, and a discriminator, 
which distinguishes real data from generated ones. High-quality 
data can be produced by the generator through such an adversa-

rial training process 114 . VAEs map data into a latent space and 
reconstruct it by optimizing the distribution of latent variables 
using variational inference, enabling the generation of diverse and 
continuous samples 115 . Diffusion models simulate the gradual 
noise addition and removal process, reverse-engineering realistic 
distributions of real samples from random noise 116 . Deep gener-

ative models have been widely applied in drug molecule 
design 117—119 , which also indicates their potential for functional 
excipient design 120,121 . For instance, Yue et al. 122 conducted a 
benchmark study exploring the use of six common deep genera-

tive models (Variational Autoencoder, Adversarial Autoencoder, 
Objective-Reinforced GANs, Character-level Recurrent Neural 
Network, REINVENT, and GraphINVENT) for de novo polymer 
design, aiming to design polymers with high glass transition 
temperatures. Similarly, Liu et al. 123 trained a molecular graph 
generative model based on invertible regularized flows on a 
dataset of 250k polymers to design polymers with a high glass-

transition temperature (T g ) and a wide bandgap. Beyond func-

tional excipient design, generative models can also create drug 
formulations with desired performance. The aforementioned 
work 86 , combining the Continuous-Conditional GAN method and 
the On-Demand Solid Texture Synthesis (STS) architecture to 
design implants with controlled particle size and drug loading, is a 
typical example. Elbadawi et al. 124 trained conditional GANs 
(cGANs) on a dataset of over 1437 3D-printed formulations. They 
explored 27 different cGAN architectures to generate 270 for-

mulations and selected a model with a balanced capability to 
generate novel yet realistic formulations, successfully printing one 
of the generated formulations. Additionally, reinforcement 
learning can be integrated with deep generative models to opti-

mize molecule generation through reward mechanisms 125 . Over-

all, deep learning-based design demonstrates the potential to drive 
a new paradigm of target-oriented, design-driven research in drug 
delivery.

3.4. AI platform deployment for model applicability 
enhancement

Developing user-friendly AI platforms can enhance the practical 
value of AI models while facilitating their continuous improve-

ment and broader adoption. Although the development of AI 
models is crucial, their actual impact depends on whether they can 
be efficiently and conveniently utilized by a wider range of users, 
such as pharmaceutical researchers and clinicians. Deploying AI 
models on public platforms significantly lowers the technical 
barriers for drug developers to integrate AI into their workflows. 
Furthermore, public deployment can drive the iterative advance-

ment of AI models. Under data privacy protection, AI models can 
be fine-tuned and updated using real-world data and user feed-

back, thereby improving their predictive performance and gener-

alizability. Additionally, AI platforms can promote collaboration 
among various parties within and beyond the pharmaceutical

industry. Academia, industry, and regulatory agencies can 
leverage shared AI platforms to exchange data, validate model 
performance, and assess the applicability of emerging AI algo-

rithms. This collaborative framework not only accelerates drug 
development but also facilitates the regulatory integration of AI in 
drug delivery. Regulatory authorities can utilize these platforms to 
evaluate the reliability of AI in formulation design, quality con-

trol, and risk assessment, laying the foundation for the incorpo-

ration of AI into pharmaceutical regulatory frameworks.

AI platform construction encompasses multiple steps, 
including model optimization and packaging, application pro-

gramming interface development and integration, user-friendly 
front-end interface design, cloud computing and scalability, data 
privacy and security protection, and the integration of a contin-

uous feedback mechanism. These processes can be referenced by 
several drug delivery AI web-platforms from our group, which 
span preformulation studies, formulation strategy design, and 
formulation prediction. In 2021, our group 126 developed the first 
drug delivery AI platform, PharmSD, to predict solid dispersions’ 
stability and dissolution. Following this, preformulation AI plat-

forms, PharmDE 56 and FormulationBCS 127 , were developed to 
evaluate drug-excipient compatibility and predict Bio-

pharmaceutics Classification System (BCS) categories, respec-

tively. FormulationAI 92 is the first integrated AI platform for drug 
formulation prediction, covering 16 key formulation characteris-

tics across six formulation types: cyclodextrin inclusions, solid 
dispersions, phospholipid complexes, nanocrystals, self-

emulsifying drug delivery systems, and liposomal formulations. 
By simply inputting the basic information of drugs and excipients, 
users can efficiently perform AI-powered excipient selection, and 
formulation & process parameter design. The recently launched 
FormulationDT 101 , the first data-driven and knowledge-guided AI 
platform for small molecule formulation strategy design, serves as 
a crucial decision-making tool upstream of formulation develop-

ment, adding an important component to the new paradigm of 
computer-driven drug development 128 . Moving forward, AI plat-

forms in drug delivery are expected to become increasingly 
standardized, and the functionalities of AI platforms will further 
expand. For example, developing automated machine learning 
(AutoML) platforms 129 in recent years can enable non-data sci-

ence researchers to easily access advanced learning algorithms for 
building AI models in drug delivery. With the rapid advancement 
of large language models, developing AI assistants for drug de-

livery is another viable approach to lowering the barriers to AI 
usage. Furthermore, optimizing models through data sharing can 
create an integrated “data-model-user” ecosystem, fostering 
continuous positive feedback for AI-driven drug delivery. Overall, 
the deployment of AI platforms not only enhances the accessi-

bility of AI in the pharmaceutical industry but also provides strong 
support for scientific innovation and industry upgrades, acceler-

ating the pace of intelligent drug development.

4. Methodology for reliable AI-driven drug delivery 
research

The expansion of data and advancements in AI technology have 
driven the widespread adoption of AI in drug delivery. However, 
the modeling approaches employed by different researchers vary, 
posing challenges to the reproducibility and reliability of the 
research. To support and ensure the quality, reliability, and 
reproducibility of implementing AI in drug delivery research, we
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propose a comprehensive set of guidelines that should be followed 
throughout the research lifecycle (Fig. 4). The detailed guidelines 
address four critical aspects: (1) problem definition for deter-

mining research objectives and data requirements; (2) data engi-

neering for improving data quality; (3) model development for 
robust models; and (4) model sharing and deployment for pro-

moting utility. Each component has been carefully designed to 
help researchers avoid common pitfalls in AI-driven drug delivery 
studies and improve model reliability and reproducibility. Spe-

cifically, based on the guidelines and our previous experience, the 
“Rule of Five” (Ro5) was proposed as the essential requirements 
for reliable AI applications in formulation prediction.

• Sufficient dataset volume, preferably ≥500 entries;

• Component diversity, preferably ≥10 drugs and coverage of 
critical excipients;

• Inclusion of all critical process parameters;

• Proper molecular representation for both drugs and excipients, 
e.g., molecular descriptors and fingerprints;

• Suitable algorithms and model interpretability.

Here we present two representative case studies demonstrating 
our proposed “Rule of Five”. The first case study examined the 
stability prediction of solid dispersions 130 . The researchers 
established a dataset comprising 646 formulations, including 50 
drug molecules and 47 polymer excipients. The model inputs 
included molecular descriptors of both drugs and polymers, along 
with critical process parameters such as preparation methods and 
process temperatures. Comparative evaluation of eight machine 
learning algorithms revealed that the random forest model ach-

ieved the highest prediction accuracy of 82.5% on the test set. 
Analysis of the 20 most important features identified key patterns 
in the model’s decision-making process. The second case study 
investigated machine learning applications in drug/cyclodextrin 
systems 16 . This research constructed a dataset of 3000 formula-

tions, including 1320 guest molecules and 8 cyclodextrins. Among 
three different algorithms evaluated, the LightGBM model per-

formed best, achieving an R 2 value of 0.86 on the test set. Feature 
importance analysis revealed the key molecular descriptors and 
physicochemical properties that predominantly influenced the

model’s predictions, providing valuable insights for future 
formulation design. Notably, this study evaluated the impact of 
dataset size on model performance by progressively reducing the 
training data volume. Reducing the dataset from 3000 to 500 
samples led to substantial performance degradation, with mean 
absolute error (MAE) increasing from 1.38 to 2.28 kJ/mol and R 2 

decreasing from 0.86 to 0.58. These findings empirically 
demonstrated the importance of adequate dataset size in AI-driven 
drug delivery research.

4.1. Problem definition

Problem definition is a crucial first step in any data analysis 
project. At this stage, the study objective should be defined, such 
as predicting drug—excipient compatibility or drug release pro-

files. The next step is to determine what data needs to be collected 
to address the identified problem effectively through domain 
expertise. Careful consideration at this stage is crucial as it can 
prevent unnecessary rework and costly data recollection later in 
the project.

4.2. Data engineering

4.2.1. Data collection

When initiating data collection, public databases and repositories

often serve as valuable initial data sources, potentially offering

substantial datasets that can significantly reduce the burden of data

collection. However, such public resources are not always avail-

able for specific drug delivery tasks. Consequently, researchers

often need to extract data from patents and literature manually.

Modern data mining approaches based on NLP and ML have 
provided advanced tools and techniques to assist in this data 
collection process, which helps to build semi-automated or fully 
automated pipelines to reduce manual labor requirements and 
accelerate data gathering processes 131,132 . It is worth noting that 
whether using public datasets or newly collected information, all 
data sources should be meticulously documented and verified to 
prevent recording errors during collection.

While the ideal scenario involves collecting extensive and 
diverse datasets, the reality is that the amount of data that can be

Figure 4 Guidelines for implementing AI in current drug delivery research.
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collected is largely determined by the specific drug delivery task, 
ranging from tens to thousands of data points. Therefore, choosing 
the appropriate algorithm based on the amount and type of data is 
more important. For example, a range of advanced techniques 
developed specifically for small datasets, such as data augmen-

tation and transfer learning, may help build robust models even 
with limited data resources. For a detailed discussion of 
addressing data sparsity through advanced learning strategies, 
please refer to Section 3.2.

4.2.2. Data cleaning and management

Data cleaning and preprocessing are key steps in the data engi-

neering pipeline for further data quality improvement. The basic 
operations to clean data include duplicate removal and missing 
value handling. While removing features with missing values 
directly is possible, sometimes we wish to retain important fea-

tures by filling in missing data instead. Either statistical methods 
(e.g., mean or median imputation) or ML-based imputation tech-

niques (e.g., missForest 133 ) can be used to deal with missing 
values. However, attention must be paid to the proportion of 
missing values, the missingness mechanism, and the missing data 
patterns when choosing appropriate imputation methods 134 . Many 
Python packages provide efficient tools to automate these pro-

cesses, which are highly efficient and especially beneficial when 
working with large datasets.

Another important issue that must be treated with caution is the 
bias that arises when integrating data from multiple sources, 
which may obscure important patterns in the dataset. Such bias 
may arise from differences in experimental conditions, computa-

tional methods, or data collection protocols across different da-

tabases. Establishing a standardized data processing pipeline and 
documentation is required to identify and manage the potential 
bias. All steps throughout the cleaning and merging process 
should be meticulously documented and reported to ensure 
reproducibility and traceability.

4.2.3. Data representation

In addition to drug/excipient molecules, data representation in 
drug delivery also includes information such as formulation data 
and experimental conditions. This multifaceted nature requires 
careful consideration of various representation methods for 
effective model development while maintaining interpretability.

Drugs and excipients are primarily molecules. A common 
practice is to convert these molecules into their SMILES string 
representation and then calculate molecular descriptors or mo-

lecular fingerprints based on specialized software packages such 
as PaDEL 135 , Mordred 136 , and RDKit 137 . These molecular de-

scriptors and fingerprints can be further filtered by feature engi-

neering. When dealing with excipients such as polymers, the 
characterization process requires additional considerations beyond 
the molecular structure of the monomer, such as the degree of 
polymerization 130 . Information such as formulation and experi-

mental conditions can often be represented as tabular features, 
which are normally set up empirically by the researchers.

Recently, with the expansion of available data types and the 
development of advanced AI algorithms, DL-based end-to-end 
representations have also been adopted. This approach directly 
processes various data types, including images and text, to auto-

matically learn appropriate representations, thus reducing the need 
for extensive feature engineering. However, it is worth noting that 
DL models are “black boxes,” and their automatically learned 
representations often face interpretability challenges. For a

detailed discussion of advances in data processing and represen-

tation, refer to Section 3.1.

The success of data representation methods often lies in finding 
the right balance between complexity and interpretability. While 
more complex representations might capture subtle patterns in the 
data, they may sacrifice interpretability and practical utility. 
Conversely, simpler representations might be more interpretable 
but could miss important patterns. This trade-off should be care-

fully considered based on the specific requirements of the drug 
delivery application and the intended use of the resulting models.

4.2.4. Data visualization 
Data visualization is important for researchers to assess data 
quality before model development, as it helps identify potential 
issues that might not be immediately apparent in numerical or 
tabular formats.

Exploratory data analysis (EDA) through visualization begins 
with understanding the fundamental characteristics of the dataset. 
Basic statistical visualizations, such as histograms, box plots, and 
density plots, provide immediate insights into data distributions, 
helping researchers identify outliers, distribution shifts, and po-

tential anomalies. Advanced visualization techniques refer to 
dimensionality reduction methods such as principal component 
analysis (PCA) 138 , t-SNE 139 , and UMAP 140 . These methods can 
transform high-dimensional complex datasets into low-

dimensional representations. Visualizing these meaningful low-

dimensional representations can enable researchers to identify 
data distributions and patterns that might be obscured in the 
original high-dimensional space.

4.3. Model development

4.3.1. Data preparation

Model development in drug delivery systems demands meticulous 
data preparation to ensure reliable and robust outcomes. This 
foundational phase encompasses several critical aspects that 
directly influence model performance and reliability, requiring 
careful consideration of various techniques and methodologies.

Data balancing is a critical challenge in drug delivery datasets, 
where class imbalance frequently occurs. This imbalance might 
manifest in various ways, such as disproportionate success rates in 
formulation studies. Such an imbalance can severely affect model 
performance, as the model may be biased towards the majority 
class and underperform on the minority class. To address this 
challenge, balanced datasets can be created by over-sampling the 
minority class and under-sampling the majority class 141 . Synthetic 
Minority Oversampling Technique (SMOTE) 142 is a widely used 
method for generating synthetic samples for minority classes 
while preserving their underlying statistical properties and distri-

bution patterns.

Another factor to consider is data scaling. When dealing with 
various feature sets common in drug delivery studies, there is 
often a huge difference in the range of values taken by different 
features. Some algorithms (e.g., decision trees and LightGBM) are 
insensitive to the range of feature values, while others (e.g., sup-

port vector machines and neural networks) are sensitive to them, 
requiring appropriate scaling. When selecting these scaling 
methods, both the characteristics of the features and the re-

quirements of the chosen modeling algorithm should be consid-

ered. Most importantly, the scaling parameters computed from the 
training set must be consistently applied to both the validation and
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test sets to prevent data leakage and ensure the reliability of the 
model evaluation.

Data augmentation is not mandatory, but it is a powerful tool to 
enhance model robustness with small datasets. For example, 
image transformations such as rotation and scaling can be 
implemented for image-based datasets to help improve model 
performance 143 . Additionally, SMILES enumeration can augment 
the representations of SMILES-based drugs/excipients by taking 
advantage of the fact that a single molecule can correspond to

multiple SMILES representations 144 .

4.3.2. Model training

The ML model training process for drug delivery applications 
encompasses several interconnected stages from data splitting to 
model optimization.

Drug delivery often faces data challenges, including small data 
sizes, high noise levels, and high-dimensional features. Randomly 
splitting the dataset into training, validation, and test sets is a 
common approach in studies with abundant data. However, for the 
small datasets often encountered in drug delivery, a common one-

shot “Training-Validation-Test” data splitting may severely affect 
the model performance, such as overfitting, where models tend to 
learn noise or spurious patterns from limited data instead of 
capturing generalizable trends 145 . To address this, cross-valida-

tion 146 is often a better choice. This method divides the dataset 
into k folds, where k‒1 folds are used for training while the 
remaining fold serves as the validation set. This process is 
repeated k times, with each fold being the validation set once. The 
final performance is reported as the average across all iterations 
with their standard deviations, providing a more robust assess-

ment. Beyond this, specific data splitting methods can be adopted 
for certain scenarios. For example, stratified sampling can be 
incorporated into various splitting strategies to maintain consistent 
data distribution across all subsets. Besides, placing drug mole-

cules and their formulations not seen during training into the test 
set allows evaluation of the model’s generalization ability on 
unseen drugs. Temporal splitting is a data splitting strategy that 
takes the time factor into consideration, where historical data is 
used for training, and newer data is reserved for testing, which 
simulates the prospective application of the model 147 . For specific 
data and task types in the drug delivery field, specific data splitting 
methods should be considered to enable more accurate model 
performance evaluation. For instance, in 2019, our group 74 pro-

posed a tailored automatic data splitting algorithm for drug 
formulation datasets to address the small and imbalanced data 
space. In microsphere dissolution prediction 94 , we employed 
group splitting to ensure that different time points from the same 
dissolution curve did not simultaneously appear in both the 
training and test sets. This approach was crucial, as the goal was to 
predict an entire dissolution curve. The key principle is to use data 
splitting methods aligned with the model’s intended application 
scenarios.

The next step is to select ML algorithms for model training. 
For beginners, it is recommended to start with algorithms that are 
widely used today, such as random forest 12 . After gaining some AI 
implementation experience, you can try developing multiple 
models using different combinations of algorithms and represen-

tations, then select the best model that suits the task at hand. 
Hyperparameter tuning significantly impacts model performance. 
In traditional machine learning, this involves optimizing param-

eters like the number of trees in a random forest and the kernel 
type in support vector machines. The process becomes more

complex in deep learning, encompassing parameters such as 
network architecture, learning rate, and batch size. Commonly 
used hyperparameter search strategies are grid search, random 
search, and Bayesian optimization 148 . Further insights into ma-

chine learning algorithm selection can be found in the review by

Vamathevan et al 149 .

After training individual models separately, using ensemble 
methods to combine the predictions of multiple models is ex-

pected to improve the prediction results further. Further insights 
into ensemble learning methods and applications can be found in
the review by Cao et al 150 .

4.3.3. Model evaluation and selection

In addition to rational data splitting to improve the reliability of 
model validation, it is also necessary to establish requirements for 
model performance reporting to facilitate a thorough evaluation of 
the models.

• A comprehensive report of performance metrics is the basis for

model evaluation. For classification tasks, common metrics 
include accuracy, precision, recall, F1-score, and area under 
the receiver operating characteristic curve (ROC_AUC). Met-

rics such as mean square error (MSE), mean absolute error 
(MAE), and coefficient of determination (R 2 ) are commonly 
used for regression tasks. Different metrics correspond to 
different aspects of model evaluation, and we recommend 
reporting model performance as comprehensively as possible 
for a thorough assessment.

• Report model performance based on cross-validation or

repeated experiments. The generalization ability of the models 
should be assessed using methods such as “group splitting”, 
“scaffold splitting”, or “temporal splitting”.

• When proposing a new model, it should be compared with

simpler baseline and state-of-the-art models to clarify improved 
model performance and the basis for model selection.

• Model selection should be guided by task requirements rather

than model complexity alone. More sophisticated models don’t 
necessarily outperform simpler alternatives, particularly when 
interpretability is crucial.

4.3.4. Model interpretability

Model interpretability in machine learning enhances the trans-

parency and practical value of AI research in drug delivery by 
explaining how models arrive at their predictions in a human-

understandable way. Interpretable AI models serve as a crucial 
bridge between computational predictions and pharmaceutical 
sciences. They can help understand complex formulation-

performance relationships and accelerate the formulation optimi-

zation process.

Methods for providing model interpretability in drug delivery 
research can be primarily categorized into two approaches: 
transparent design and post hoc interpretation. Transparent design 
here refers to choosing models where the decision-making process 
is easy to understand during model construction, such as linear 
regression and tree-based algorithms (e.g., Decision Trees, 
Random Forest, and LightGBM). Post hoc interpretation methods 
are normally model-agnostic, which means they can be applied to 
various machine learning models, including complex deep neural 
networks. These methods include using SHAP (Shapley Additive 
Explanations) 151 and LIME (Local Interpretable Model-agnostic 
Explanations) 152 to analyze the significance of input features on
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model decisions. Notably, combining inherently interpretable al-

gorithms with post hoc interpretation tools enables validation and 
complementary explanations from different perspectives, allowing 
for a deeper and more comprehensive exploration of formulation-

performance relationships. For example, Mendes et al. 153 imple-

mented this complementary approach by combining tree-based 
models with SHAP analysis to investigate nanoparticle design 
principles in cancer treatment, offering robust and comprehensive 
insights into nanoparticle design-performance relationships. 
Further insights into model interpretability can be found in the 
review by Jiménez-Luna et al. 154

4.3.5. Uncertainty quantification

In drug delivery, ML models are typically trained on limited 
datasets, and their prediction reliability generally decreases when 
encountering compounds that differ significantly from the training 
examples. This raises a critical concern in pharmaceutical devel-

opment: how much can we trust the predictions? The importance 
of quantifying prediction confidence rivals that of improving 
model accuracy itself. The challenges of small datasets, variable 
data quality, and potential out-of-distribution predictions make it 
essential to define model uncertainty for reliable real-world 
applications.

Sources of uncertainty in pharmaceutics typically arise from 
two primary types 155 : aleatoric uncertainty and epistemic uncer-

tainty. Aleatoric uncertainty refers to the irreducible uncertainty 
caused by inherent randomness in the system, manifesting as noise 
and measurement errors in the data. Epistemic uncertainty, on the 
other hand, arises from incomplete knowledge or understanding, 
which in machine learning models is primarily reflected in the 
model’s limited understanding of the data distribution.

Various uncertainty quantification methods have been applied 
in drug discovery, such as Bayesian-based, similarity-based,

ensemble-based, and probabilistic modeling approaches 156 .

Although not yet widely adopted, some machine learning studies 
in drug delivery have begun incorporating uncertainty quantifi-

cation methods. For example, Deng et al. 94 have developed a 
consensus model for microsphere dissolution curve prediction 
with quantified uncertainty by reporting the range of predictions 
from four sub-models in the ensemble. Defining the applicability 
domain (AD) is a method to define the range where a model can 
make reliable predictions by measuring how similar new samples 
are to the training data. This approach has been applied in 
PharmSD 126 , a machine learning platform for predicting the sta-

bility and solubility of solid dispersions. This platform used a set 
of distance-based chemical structure similarity metrics to assess 
whether the input drug molecules fall within the model’s appli-

cation domain.

4.4. Model sharing and deployment

For scientific research, data and code sharing help ensure that re-

sults can be accurately replicated. This sharing validates research 
results and enables knowledge transfer, allowing other researchers 
to create cumulative advances on existing work. Deploying AI 
models to public platforms can further transform them into prac-

tical tools, which lowers the programming barrier to using AI 
models. While deploying AI models often requires more pro-

gramming knowledge beyond AI, tools such as Streamlit (https:// 
streamlit.io/) offer a convenient solution for researchers to deploy 
their models with pure Python scripts quickly. For a detailed 
introduction to model deployment, please refer to Section 3.4.

5. Future stage: towards an AI-driven transformation in 
drug delivery after 2024

The future stage of drug delivery stands at the threshold of a 
revolutionary transformation, as we are moving towards an era 
where AI becomes an integral component of drug delivery system 
design and optimization. To explore this transformation, this 
section delineates the technological trajectory through several key 
areas, including leveraging large language models (LLMs) and the 
multidisciplinary integrations between AI techniques and other 
approaches. These technological convergences create new op-

portunities for more intelligent, adaptive, and personalized drug 
delivery systems that could dramatically improve therapeutic 
outcomes (Fig. 5). While technological advancement is crucial, 
the successful implementation of AI in drug delivery critically 
relies on talent development and cultural transformation. This 
transformation requires nurturing interdisciplinary expertise, 
fostering a data-driven mindset, and establishing collaborative 
ecosystems between AI experts and pharmaceutical scientists.

5.1. Leverage the power of large language models

The emergence of large language models (LLMs), built upon 
transformer-based architectures such as BERT and GPT, repre-

sents a significant advancement in artificial intelligence. These 
models, trained on vast amounts of data, have shown remarkable 
potential across diverse fields, encompassing automated text 
analysis, knowledge extraction, and complex pattern recognition. 
ChatGPT’s release in late 2022 particularly exemplified this po-

tential. Unlike traditional ML models that require specific input 
formats and coding expertise, modern LLMs like ChatGPT utilize 
prompt engineering to accept natural language instructions, 
making them more accessible to researchers without extensive 
programming backgrounds.

Models specifically trained on biomedical and chemical data 
have shown superior performance in drug development tasks. 
Biomedical LLMs such as BioGPT 157 and PubMedBERT 158 excel 
at understanding medical literature and biological concepts. 
Chemical-oriented LLMs such as MolFormer 159 , and 
ChemBERTa 160 specialize in molecular structure understanding 
and prediction. These LLM-based systems have demonstrated 
effectiveness in several key applications, including molecular 
property prediction 161 , understanding protein structures 162 , drug 
repurposing 163 , and automated screening of the literature 164 . In the 
field of drug delivery, the application of LLMs remains limited. 
Currently, they are primarily utilized in the molecular design of 
drug delivery materials 165 , while many research areas remain 
unexplored.

The applications of LLMs are expected to expand into broader 
areas, encompassing the entire workflow from literature review 
and database construction to critical formulation design and 
experimental result prediction. At first, through automated anal-

ysis of vast literature, LLMs can help researchers rapidly extract 
key scientific information, such as molecular structures and 
properties, as well as formulation and processing parameters 
related to drug delivery. This efficient knowledge extraction 
capability further supports constructing and optimizing multidi-

mensional databases, encompassing material characteristics, 
experimental conditions, and drug release behaviors, providing 
systematic references for research. Based on this data foundation, 
LLMs can generate preliminary formulation designs and experi-

mental procedures through cross-database analysis, integrating
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multidimensional information including drug properties, excipient 
characteristics, and process parameters. This data-driven analysis 
not only provides formulation composition recommendations but 
also predicts potential experimental outcomes, offering valuable 
decision-making references for researchers. Meanwhile, LLMs’ 
capabilities in code generation and experimental protocol design 
offer new efficiency optimization approaches. On the regulatory 
front, LLMs can streamline and accelerate review processes for 
IND and NDA documents by providing powerful integration ca-

pabilities and automated assistance 166 . Although these applica-

tions remain conceptual, their closed-loop capability encompasses 
the entire research workflow from knowledge extraction and 
database construction through design generation and result pre-

diction. This comprehensive data-driven approach enables intel-

ligent collaboration throughout the research cycle, potentially 
revolutionizing the efficiency of drug delivery research.

It is foreseeable that over the next few years, there will be an 
increased exploration of LLMs in drug delivery studies, which 
presents both opportunities and challenges. As the technology 
continues to evolve, collaboration between computational scien-

tists, pharmaceutical researchers, and regulatory agencies will be 
critical in establishing standardized protocols for applying LLMs 
in drug delivery. Successful implementation of LLMs will require 
careful validation and particular vigilance against the problem of 
LLM hallucinations 167,168 ―the tendency of LLMs to generate 
plausible but factually incorrect information, which could instead 
lead to additional risks in pharmaceutical research and develop-

ment. These challenges underscore the importance of developing 
robust validation frameworks and maintaining human oversight in 
critical decision-making processes.

5.2. Cross-disciplinary artificial intelligence

While machine learning has brought numerous innovative op-

portunities to the field of drug delivery over the past few decades, 
its applications face challenges such as high data requirements,

weak interpretability, and limited generalization capabilities. By 
deeply integrating machine learning with mathematically and 
physically based multiscale modeling, these challenges can 
potentially be addressed, paving the way for new scientific 
exploration. Over the past decade, “Computational Pharmaceu-

tics” has emerged as a burgeoning discipline, introducing AI and 
multiscale modeling technologies into pharmaceutics and offering 
immense potential to disrupt traditional formulation development 
paradigms 169,170 . Representative methods in multiscale modeling 
include quantum mechanics (QM) 171 , molecular dynamics (MD) 
simulations 172 , mathematical modeling, physiologically based

pharmacokinetic (PBPK) modeling 173 , and process simulation 174 .

Our earlier review proposed the deep integration of AI 
with multiscale modeling to achieve computer-driven drug 
development 6 . In 2023, our group 128 further introduced a 
computer-driven drug formulation design framework emphasizing 
the “understand-design-validate-optimize” cycle, as depicted in 
Fig. 6. This design-oriented framework implements the princi-

ples of Quality by Design (QbD), promising not only to improve 
formulation development efficiency significantly but also to open 
a promising path toward personalized medicine design. It should 
be recognized that the widespread application of this framework 
still faces numerous challenges, relying on the refinement of 
computational modeling technologies as well as continuous 
breakthroughs in cross-disciplinary artificial intelligence.

5.2.1. AI-PBPK modeling

Physiologically based pharmacokinetic (PBPK) modeling is a 
computational technique used to simulate the absorption, distri-

bution, metabolism, excretion, and toxicity (ADMET) of drug in 
the body 175 . This modeling approach integrates physicochemical 
data by mathematical equations to predict how drugs and other 
compounds behave in different tissues and organs. However, the 
complexity of integrating diverse physiological, biochemical, and 
physicochemical data presents significant challenges in model 
development and application. AI integration addresses these

Figure 5 Schematic illustration of future AI potentials in the drug delivery field.
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limitations by offering efficient processing of high-dimensional 
datasets, predictive capabilities for missing data, and enhanced

model accuracy 176,177 .

AI-PBPK modeling has been extensively used in drug devel-

opment to predict drug behavior, optimize dosing regimens, and 
assess drug‒drug interactions. Specifically, AI-enhanced PBPK 
models can facilitate virtual drug development by predicting drug 
behavior in various scenarios, including different populations and 
disease states. For example, our group 178 recently developed an 
integrated AI-powered PBPK platform. This platform enables 
end-to-end prediction of human PK profiles and tissue distribution 
of candidate drugs by embedding AI models for eight key drug 
properties into the PBPK framework―without requiring any 
in vitro or in vivo experimental data. The platform was validated 
using over 600 clinical plasma PK profiles, demonstrating its 
ability to accurately predict systemic exposure and organ selec-

tivity of candidate compounds. AI-PBPK models also assist in 
predicting the impact of physiological parameters like age and 
ethnicity on drug pharmacokinetics 179 . Obtaining these parame-

ters would aid in the design of drug formulations. AI-PBPK 
models also support the development of quantitative adverse 
outcome pathways for assessing drug toxicity and efficacy,

reducing the need for animal testing 180 .

Despite the advancements, the accuracy of AI-PBPK models 
still needs to be improved by expanding datasets and advanced 
algorithms. For example, AI techniques are used to predict key 
ADMET parameters from available datasets, such as plasma 
protein binding, cell permeability, and total plasma clearance, 
which are then incorporated into PBPK models 181 . This approach 
reduces the need for extensive experiments in vitro and in vivo. 
Moreover, AI can handle incomplete datasets by predicting 
missing values, thereby improving the robustness of PBPK 
models. For example, random forest models can predict tissue-to-

plasma partition coefficients (Kp) even with sparse data 182 . Thus, 
the ability to predict PK parameters without complete experi-

mental data accelerates early drug discovery and reduces the 
reliance on animal studies. Furthermore, neural networks, 
including neural ordinary differential equations, have shown better

predictive capabilities for time-series PK profiles compared to 
traditional methods 183 . Therefore, more improved approaches and 
algorithms, such as deep learning, applied to build AI-PBPK 
models would be more beneficial for drug development and 
discovery.

AI-PBPK modeling plays an important role in future drug 
regulatory assessment. Regulatory agencies like the European 
Medicines Agency (EMA) and FDA actively use PBPK models in 
various stages of drug evaluation to support decision-mak-

ing 184,185 . These models are invaluable for addressing drug 
approval, labeling, and safety questions by providing mechanistic 
insights into drug behavior 179 . However, the “black box” nature of 
many AI-PBPK models makes it challenging to understand how 
predictions are generated, which can limit their acceptance in 
regulatory settings. Meanwhile, work on AI-PBPK model inter-

pretability should also be carried out in the future. While regu-

latory support is growing, there is still a need for standardized 
guidelines and increased acceptance of AI-PBPK models in reg-

ulatory frameworks 186 . Moreover, regulatory agencies require 
rigorous validation of AI-PBPK models to ensure their reliability 
and accuracy for specific applications, such as predicting drug-

drug (or food) interactions, assessing formulation changes, and

evaluating organ impairment scenarios 187,188 .

5.2.2. AI-QM/MD modeling

AI-QM/MD modeling refers to integrating AI with quantum me-

chanics (QM) and molecular dynamics (MD) simulations in the 
context of computational drug delivery. QM methods provide 
accurate descriptions of electronic states, enabling the study of 
chemical bonding, reactivity, and charge distribution at an atomic 
level, which is essential for understanding drug metabolism and 
interactions. By combining the advantages of molecular me-

chanics to balance accuracy and computational efficiency, the 
application of QM has also been expanded, and it helps in 
calculating descriptors and physicochemical properties that are 
vital for ADMET predictions 171 . MD simulates the motion of 
atoms and molecules over time to provide insights into the 
behavior and structure of drug delivery systems at the molecular

Figure 6 The proposed computer-driven drug formulation design framework consisting of four steps: understand, design, validate, and 

optimize. Step 1: Combining in silico modeling with experimental approaches to deeply understand the physiological processes, disease 

mechanisms, biological effects, drug and formulation properties, as well as the microscopic details of drug delivery. Step 2: Developing AI-driven 

PBPK/PD models based on a systematic understanding of drug delivery to derive the desired formulation attributes based on the required drug 

exposure. Integrating machine learning with other computational modeling techniques to design or generate formulation and process parameters 

according to the desired critical formulation attributes. Step 3 and Step 4: Conducting in vivo efficacy and safety evaluations for the designed 

formulation, iteratively optimizing it until achieving the desired outcomes. Adapted from Ref. 128 with permission from Elsevier; copyright © 

2023 Elsevier.
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level 189—191 , facilitating the optimization of drug loading,

controlled release, and interactions with biological membranes 192 .

AI techniques not only have powerful predictive capabilities but 
also generate novel molecular structures with desired properties, 
accelerating the drug discovery process and targeted delivery. This 
hybrid approach leverages the strengths of AI to enhance the ca-

pabilities of QM and MD methods, which are crucial for under-

standing molecular interactions and predicting the behavior of

biological systems 6 .
AI-QM/MD modeling substantially impacts the development 

of nanoscale drug delivery vehicles. For instance, cell-penetrating 
peptides (CPPs) hold significant therapeutic potential in drug 
delivery, yet the diversity of known CPPs remains relatively 
limited. Then, a series of CPPs with different structures was 
generated based on deep generative models. Meanwhile, MD 
simulations were employed to gain mechanistic insights and pri-

oritize AI-generated peptides for further analysis. Then the top-

scoring peptides were validated through wet-lab experiments, 
resulting in CPPs with better permeability and weaker toxicity. 
This study not only demonstrates how MD simulations can sup-

port de novo peptide design but also proposes a screening pipeline 
with low cost and high accuracy 193 . A similar case study using 
MD simulations was also found in the rational design of liposomal 
drug formulation due to their superior biocompatibility, biode-

gradability, and ability to provide controlled release and targeted 
delivery 194 . The results showed that in both passive and active 
liposome loading systems, protonation of drug molecules reduces 
their binding to phospholipid membranes and alters vesicle 
morphology in multivesicular liposomes, while maintaining the 
orientation of hydrophobic parts inward and hydrophilic parts 
outward; however, in active loading systems, the presence of ions 
within the liposome cavity enhances drug retention and release 
profiles by promoting drug self-aggregation. Therefore, MD 
simulations can validate the optimal liposome formulation pre-

dicted by AI before experimental testing, which will significantly 
enhance mechanistic understanding while reducing experimental 
costs. Moreover, AI models can predict drug toxicity, bioactivity, 
and physicochemical properties, essential for designing effective 
drug delivery systems 195—197 . Therefore, combining AI with QM 
and MD methods will improve predictions’ accuracy by 
leveraging each approach’s strengths, accelerating the drug dis-

covery and delivery process.

When developing AI-QM/MD modeling, several caveats must 
be considered to ensure accurate, reliable, and efficient outcomes. 
QM methods require highly sophisticated algorithms and sub-

stantial computational resources, remaining a significant hurdle to
handling large datasets and complex molecular systems 198,199 .

Current QM/MD simulations are limited by the short time scales 
they can cover, which restricts their application in studying long-

term molecular interactions and dynamics 200 . Moreover, extensive 
validation is required to ensure the accuracy and reliability of AI-

QM/MD models.

5.2.3. Self-driving AI laboratories (AI-SDLs)

Self-driving laboratories (SDLs) represent a breakthrough in sci-

entific research, with significant applications in chemistry and 
drug delivery 201 . These laboratories integrate automation, artificial 
intelligence, and advanced computing to accelerate the discovery

and development of new drug molecules and delivery materials 202 .

Specifically, SDLs are equipped with automated experimental 
setups that can perform a wide range of tasks. By combining the 
advantages of robotics and advanced AI algorithms, SDLs can

perform high-throughput experiments, exploring a larger chemical 
space more efficiently and with less labor-intensive processes. 
This capability is crucial for rapidly identifying promising 
candidates.

AI algorithms in SDLs generate hypotheses based on prior 
experiments, establishing a feedback loop that reduces the number 
of experiments required for discovery. Thus, this approach en-

hances the precision and effectiveness of research. For example, 
SDLs can autonomously optimize the DNA purification process 
with minimal human intervention, leading to significant im-

provements in yield and purity of the product 203 . SDLs can also 
facilitate collaboration by enabling distributed experimentation 
and data sharing across institutions. This is exemplified by pro-

jects like The World Avatar, which links laboratories globally for 
real-time collaborative optimization 204 . In the future, AI-powered 
labs can conduct iterative tests to optimize drug release kinetics 
for sustained or targeted delivery. Furthermore, AI-driven SDLs 
can rapidly design, execute, and analyze experiments to identify 
optimal formulations for drug delivery systems. For example, 
thousands of polymers or ionizable lipid types and conditions can 
be rapidly screened by AI-SDLs to determine the best carriers or 
formulation for controlled drug release.

Despite their autonomy, SDLs still require human oversight to 
ensure progress towards research goals. Integrating human intui-

tion with AI’s capabilities is crucial for the success of SDLs 205 .

Another challenge is the time required to adapt SDLs to new 
studies. Effective SDLs must be designed to work faster than 
automation alone and be readily adaptable to new research 
areas 206 . In summary, the AI-powered SDLs are poised to trans-

form scientific research by leveraging automation, AI, and 
advanced computing. While there are challenges to overcome, the 
potential benefits of accelerated discovery and efficiency make 
AI-SDLs a promising development in the scientific community.

5.2.4. AI-process simulation

Process simulation is widely used in the pharmaceutical industry 
to model, analyze, and optimize drug manufacturing processes. 
Simulating complex workflows and equipment behaviors helps 
reduce costs, improve efficiency, and ensure quality. However, 
traditional process simulation tools often face limitations such as 
requiring extensive domain expertise from formulation scientists, 
lacking standardized simulation methods for various formulations, 
and being constrained by computational inefficiencies, incomplete 
data, and expensive commercial software. With such a dilemma, 
AI enhances process simulation by enabling more accurate pre-

dictions through machine learning models trained on large data-

sets. It can optimize parameters and adapt simulations in real-

time. AI also reduces reliance on manual adjustments, accelerates 
decision-making, and improves handling of uncertainties, leading 
to more robust and efficient pharmaceutical manufacturing 
processes.

Some case studies of process simulation in the pharmaceutical 
field have been summarized 207 . Briefly, discrete element model-

ling (DEM) was introduced and used to simulate diffusion-

induced swelling and shrinkage of deformable particles, 
enabling the capture of the microstructural evolution of individual 
particles 208 . Despite powerful advantages, DEM struggles to scale 
effectively to industrial systems with huge particle counts due to 
the exponential increase in computational demand. Integrating 
DEM with Computational Fluid Dynamics (CFD) is a powerful 
simulation approach for studying particle-fluid interactions at 
micro and macro scales, bridging the gap between lab-scale
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experiments and industrial-scale production 209 . For example, a 
coupled CFD-DEM approach was utilized to study powder 
dispersion mechanisms in pharmaceutical dry powder inhalers, 
with the Aerolizer ® serving as a model device 210 . Then the study 
revealed that shear stress from turbulent flow did not significantly 
affect powder dispersion, and agglomerate-agglomerate in-

teractions occurred only after the agglomerates were ejected from 
the capsule. Therefore, this work highlighted the effectiveness of 
CFD-DEM modeling in studying dispersion mechanisms and 
provided valuable insights for future improvements in inhaler 
device design. Additionally, this hybrid technique is particularly 
valuable in pharmaceuticals, where processes such as granulation, 
mixing, drying, and fluidized bed operations involve complex 
particle-fluid interactions. However, high computational resources 
are still required, especially for large-scale systems with many 
particles, making the accelerated computing and coarse grid

simulation necessary 211 .

The utilization of AI for accelerating process simulations has 
demonstrated significant potential to drastically reduce simulation 
times while enhancing the accuracy and efficiency of predictions. 
For instance, a study proposed the Graph Neural Network-based 
Simulator (GNS) integrated with inverse design to optimize DEM 
parameters for granular flow simulations 212 . The GNS model, 
trained on high-fidelity DEM datasets, achieves superior predic-

tive accuracy and generalization across solid dosage 
manufacturing process design 213 . Compared to traditional design 
of experiment methods, the GNS approach demonstrates enhanced 
computational efficiency and dynamic optimization of complex 
parameter interactions. A joint framework by integrating AI-CFD-

PBPK modeling has also been proposed and applied to the 
development of various inhaler types such as nebulizers, pres-

surized metered-dose inhalers, soft mist inhalers, and dry powder 
inhalers, as well as in inhaled drug formulations 214 . This hybrid 
model shows great potential in predicting drug deposition in the 
human respiratory tract and using PBPK modeling to understand 
drug dissolution and absorption. Additionally, efforts have been 
made to investigate the relationship between solid dosage forms’ 
disintegration and dissolution behaviors and the formulation 
optimization of pharmaceutical products by leveraging advanced 
AI algorithms like deep learning 86,215 . These initial results high-

light the AI method’s advantages in computational speed and its 
ability to handle complex systems. This represents a significant 
advancement in computational techniques for process simulation 
and real-world problem-solving.

5.3. Challenges and future perspectives

5.3.1. Current challenges of applying AI models in drug 
delivery

Integrating AI with other advanced techniques is revolutionizing 
smart drug delivery, significantly enhancing precision, efficiency, 
and personalization in therapeutic interventions. By leveraging 
AI-driven insights, researchers can optimize drug formulations, 
design targeted delivery systems, and adapt treatments in real 
time, ultimately improving patient outcomes and minimizing side 
effects. Despite the promising outlook, AI still faces several 
challenges in achieving its goals, as mentioned earlier.

5.3.1.1. Challenges in data sharing and privacy preservation. 
Data quality and availability issues are critical to developing 
reliable AI models. Datasets in drug delivery are typically

characterized by scarcity, imbalance, and high complexity, while 
simultaneously facing severe data fragmentation. Such datasets 
are distributed across various institutions and organizations, 
creating numerous data silo, preventing effective integration of 
valuable information for model development.

To address the data issues, multiple data-sharing platforms and 
initiatives have been established globally. For instance, the Global 
Alliance for Genomics and Health (GA4GH) promotes sharing 
and standardizing genomic and health data 216 . The European 
Common Data Space aims to unlock the vast potential of data-

driven innovation by enabling secure and trusted data exchange 
across the EU 217 . In the United States, the National Cancer In-

stitute’s (NCI) Cancer Moonshot initiative has developed the 
Cancer Research Data Commons (CRDC), integrating cancer data 
from various institutions into a shared platform 218 . Scholars in 
related fields also advocate for open data 219,220 , with increasing 
numbers of researchers required or voluntarily opting to share 
their data and code transparently and accessibly. However, barriers 
to data sharing persist, including data heterogeneity, privacy

concerns, and issues of ownership 221 .

Alongside the advancement of data sharing initiatives, 
ensuring the privacy and security of patient data is also a signif-

icant concern that needs to be addressed when implementing AI in 
drug delivery systems 195 . The sensitive nature of health data ne-

cessitates robust security measures to prevent unauthorized access 
and breaches. Implementing advanced encryption techniques and 
secure data storage solutions is fundamental to safeguarding pa-

tient information in AI-driven drug delivery systems. Regulatory 
bodies also play a crucial role in overcoming these challenges. For 
instance, the FDA introduced the Knowledge-Aided Assessment 
and Structured Application (KASA) initiative to promote struc-

tured information sharing 222 . Additionally, some regulatory 
guidelines and laws, including the Health Insurance Portability 
and Accountability Act (HIPAA) and General Data Protection 
Regulation (GDPR), have been proposed to govern the privacy 
and security of personal health information. These frameworks 
mandate stringent data protection practices, including anonym-

ization, pseudonymization, and obtaining informed patient con-

sent, ensuring compliance with legal and ethical standards. 
Together, these measures aim to build a trustworthy environment 
for AI applications in drug delivery, essential for developing 
abundant, high-quality, standardized, and reliable datasets for

further advancements in computational modeling 223 .

5.3.1.2. Challenges in model transparency and inter-

pretability. The lack of transparency in AI models remains one 
of the major challenges for their clinical and commercial appli-

cations. Currently, many models are still considered “black 
boxes”. It is difficult for clinicians and regulatory authorities to 
understand the basis of model predictions, reducing their reli-

ability and practical value. Enhancing model interpretability is 
thus crucial to establishing the trust necessary for deployment in 
clinical and commercial settings.

To address this challenge, advanced AI algorithms and tools 
with enhanced interpretability have been developed. Furthermore, 
the integration of interdisciplinary subjects and AI, such as AI-

PBPK and AI-QM/MD modeling, holds significant potential for 
improving the interpretability of AI 224 . By combining the pre-

dictive power of AI with the mechanistic insights provided by 
these scientific models, researchers can better understand and 
validate the underlying processes driving AI predictions. This 
synergy not only improves the transparency of AI systems but also
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fosters trust by linking AI-driven outcomes to established scien-

tific principles.

5.3.1.3. Challenges in AI model deployment and user 
accessibility. Despite the increasing application of AI technol-

ogies in drug delivery, current AI models face significant us-

ability challenges. While many models are successfully 
developed, their broader application and development are often 
hindered by limited deployment capabilities, making it difficult 
for users to utilize them effectively. By integrating AI-driven drug 
delivery systems, patient monitoring, and personalized treatment 
planning 225 , user-friendly platforms may feature intuitive in-

terfaces that allow patients and healthcare providers to access 
real-time insights into drug efficacy and health outcomes. 
Expanding beyond individual platforms, an intelligent ecosystem 
covering the entire drug development pipeline is gradually 
becoming operational. In the upstream drug discovery phase, 
advanced AI algorithms are extensively applied to molecular 
generation, target identification, and virtual screening, signifi-

cantly enhancing the success rate and efficiency of drug devel-

opment 226 . In the downstream phases of clinical trials and patient 
care, AI optimizes trial designs, patient stratification, and real-

time data analysis, improving trial efficiency and the personali-

zation of therapeutic strategies 227 . The molecular data generated 
in the upstream research stage serve as a foundation for AI-driven 
drug delivery. In contrast, the vast amounts of real-world data 
(RWD) accumulated in downstream clinical trials become valu-

able resources for further refining drug delivery AI models. This 
ecosystem not only shortens drug development timelines and 
reduces costs but also lays a solid foundation for personalized 
medicine and precision therapy. It signifies the advent of a fully 
intelligent paradigm for AI-driven drug development, ushering in 
a new era of innovation.

Besides the limitations in data quality, model transparency, and 
usability, the validation of AI models’ effectiveness and safety 
requires substantial time accumulation. In drug delivery, the 
validation of model predictions typically relies on long-term real-

world data support, and the acquisition and verification of such 
data necessitate rigorous clinical trials and regulatory approvals, 
which directly lead to delays in clinical implementation and 
commercialization. Nevertheless, regulatory authorities world-

wide are taking proactive measures, as exemplified by the FDA, 
Health Canada, and the Medicines and Healthcare products Reg-

ulatory Agency (MHRA) jointly establishing ten guiding princi-

ples to support the safe and efficient application of AI in medical 
devices, with explicit emphasis on model transparency and inter-

pretability 228 . As these regulatory frameworks continue to 
improve and technological innovation deepens, AI-based drug 
delivery systems are expected to gradually overcome these bot-

tlenecks, providing robust technical support for precision medi-

cine and personalized treatment.

5.3.2. Talent and education development

Currently, the pharmaceutical field faces a critical shortage of AI 
talent, creating an urgent need for comprehensive training pro-

grams to bridge this gap. Regarding talent cultivation, the demand 
for interdisciplinary professionals is skyrocketing, which requires 
knowledge input from machine learning, data science, and 
domain-specific pharmaceutical sciences. Professionals with 
traditional pharmaceutical backgrounds are supplementing their 
knowledge with expertise in computational science and artificial 
intelligence, while data scientists and AI engineers are learning

about the unique requirements of the pharmaceutical industry 
through courses in medicinal chemistry and pharmacokinetics. 
Increasingly, universities and research institutions are offering 
courses or research projects related to AI-driven drug develop-

ment, fostering a new generation of interdisciplinary talent with 
both theoretical foundations and industrial perspectives, injecting 
fresh energy into the sustainable development of the pharmaceu-

tical industry. In brief, training should include practical applica-

tions of AI in drug formulation and clinical trials. Students should 
be exposed to AI platforms and tools used in the pharmaceutical 
industry, such as data mining, high-throughput screening, and 
simulation tools.

Additionally, introducing computational pharmaceutics cour-

ses in universities holds significant importance for the future of 
pharmaceutical science. As the pharmaceutical industry increas-

ingly relies on advanced computational tools and AI to accelerate 
drug development, optimize formulations, and enhance drug de-

livery systems, equipping students with these skills is essential for 
the future. For example, a graduate course named “Computational 
Pharmacy” has been established and conducted at the University 
of Macau since 2015, and the “Computational Pharmaceutics” 
course has also been introduced at Uppsala University in Sweden 
since 2021. Meanwhile, the reference book on computational 
pharmaceutics, first published in 2015, has released its second 
edition this year (2024) 169,170 . Top universities in China have 
gradually started establishing artificial intelligence schools this 
year, equipped with professional faculty and facilities. Such ef-

forts and courses prepare future researchers to harness computa-

tional models for predicting drug behavior, analyzing complex 
biological interactions, and designing innovative drug delivery 
systems. By integrating computational pharmaceutics into the 
curriculum, universities can nurture a new generation of experts 
capable of driving innovation and shaping the future of smart drug 
delivery and personalized medicine.

5.3.3. Culture and collaboration

Capital market enthusiasm has significantly accelerated the 
development of AI-driven drug delivery systems, as AI pharma-

ceutical companies increasingly capture the attention of investors 
eager to support innovative healthcare solutions. However, this 
rapid advancement has also brought various cultural and ethical 
issues, including concerns about data privacy and security, bias in 
AI models due to non-representative datasets or fake data, and the 
accountability and transparency of AI systems in medical deci-

sion-making 229 .

To address these issues, it is essential to implement robust 
regulations, develop diverse and inclusive datasets, and establish 
clear accountability for AI decision-making. Firstly, stringent 
regulations must be enacted to protect patient data, guaranteeing 
that personal information is handled securely and transparently. 
Secondly, a clear framework for accountability must be devel-

oped, delineating the responsibilities of AI developers, healthcare 
providers, and regulatory bodies in case of errors or adverse 
outcomes associated with AI systems. Thirdly, stakeholders 
should collaborate to create initiatives that promote equal access 
to AI-enhanced therapies, particularly for underserved pop-

ulations. Additionally, global collaboration is essential for 
harmonizing ethical standards and regulations, while investments 
in education and training are crucial for bridging the gap between 
AI advancements and clinical practice. By focusing on these 
principles and measures, AI in smart drug delivery can achieve 
ethical integrity and cultural sensitivity, ensuring that these

Artificial intelligence for drug delivery 19

+ MODEL

Please cite this article as: Wu Yiyang et al., Artificial intelligence for drug delivery: Yesterday, today and tomorrow, Acta Pharmaceutica Sinica B, https:// 

doi.org/10.1016/j.apsb.2025.09.022



remarkable advancements benefit all patients equitably and 
responsibly.

Meanwhile, close collaboration among academia, industry, and 
regulatory agencies drives coordinated innovation across the 
sector. Academia supports cutting-edge theories and technological 
breakthroughs, industry translates these achievements into prac-

tical products, and regulatory agencies ensure the safety and ef-

ficacy of innovative outcomes through scientific policies and 
standards. This tripartite collaboration not only accelerates the 
maturation of AI-driven drug development technologies but also 
propels the entire industry toward greater standardization, scien-

tific rigor, and globalization. The future of AI in drug delivery will 
benefit from increased collaboration between AI researchers, 
pharmaceutical companies, and regulatory bodies. This collabo-

rative approach can help address current challenges and accelerate 
the development of innovative drug delivery systems.

Despite the numerous challenges that remain, the future per-

spectives are promising. Addressing these challenges through 
innovative solutions and regulatory advancements is crucial for 
successfully integrating AI in smart drug delivery systems, ulti-

mately leading to more efficient, personalized, and effective 
treatments in the future.

6. Conclusions

Through this review, we have explored how AI applications have 
evolved from simple predictive models to advanced algorithms 
capable of handling complex delivery challenges. It is evident that 
AI techniques have served as effective tools in modern pharma-

ceutical research. Driven by improvements in computational 
power, algorithms, and the expanding volume of pharmaceutical 
data, the synergy between AI and drug delivery research will 
continue to strengthen. Emerging technologies such as LLMs and 
multidisciplinary collaboration between AI and other technologies 
hold great promise for more efficient development pipelines and 
personalized drug delivery. To fully realize this potential, 
comprehensive talent training and education are essential. As AI 
tools become more accessible and useable, there has never been a 
better time for pharmacy researchers to embrace these technolo-

gies to enhance their research workflows.
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Hellander A, et al. Deep-learning models for lipid nanoparticle-based 

drug delivery. Nanomedicine 2021;16:1097—110.

79. Nadkarni PM, Ohno-Machado L, Chapman WW. Natural language 
processing: an introduction. J Am Med Inf Assoc 2011;18:544—51.

80. Ballard DH, Brown CM. Computer vision. Hoboken: Prentice-Hall; 

1982.

81. Ramachandram D, Taylor GW. Deep multimodal learning: a survey 
on recent advances and trends. IEEE Signal Process Mag 2017;34: 

96—108.

82. Ye ZYF, Wang NN, Zhou JT, Ouyang DF. Organic crystal structure 

prediction via coupled generative adversarial networks and graph 
convolutional networks. Innovation 2024;5:100562.

83. Merchant A, Batzner S, Schoenholz SS, Aykol M, Cheon G, 

Cubuk ED. Scaling deep learning for materials discovery. Nature 
2023;624:80—5.

84. Townshend RJL, Eismann S, Watkins AM, Rangan R, Karelina M, 

Das R, et al. Geometric deep learning of RNA structure. Science 

2021;373:1047—51.

85. Abramson J, Adler J, Dunger J, Evans R, Green T, Pritzel A, et al. 

Accurate structure prediction of biomolecular interactions with 

AlphaFold 3. Nature 2024;630:493—500.

86. Hornick T, Mao C, Koynov A, Yawman P, Thool P, Salish K, et al. In 
silico formulation optimization and particle engineering of pharma-

ceutical products using a generative artificial intelligence structure 

synthesis method. Nat Commun 2024;15:9622.

87. Salma H, Melha YM, Sonia L, Hamza H, Salim N. Efficient pre-

diction of in vitro piroxicam release and diffusion from topical films 

based on biopolymers using deep learning models and generative 

adversarial networks. J Pharmacol Sci 2021;110:2531—43.

88. Obeid S, Mad�zarevi�c M, Krkobabi�c M, Ibri�c S. Predicting drug 

release from diazepam FDM printed tablets using deep learning 

approach: influence of process parameters and tablet surface/volume 

ratio. Int J Pharm 2021;601:120507.

89. Husseini GA, Sabouni R, Puzyrev V, Ghommem M. Deep learning 

for the accurate prediction of triggered drug delivery. IEEE Trans 

NanoBioscience 2024;24:102—12.

90. Liu XY, Wang XY, Luo YC, Wang MJ, Chen ZJ, Han XY, et al. A 3D 

tumor-mimicking in vitro drug release model of locoregional che-

moembolization using deep learning-based quantitative analyses. Adv 

Sci 2023;10:e2206195.

91. Sagi O, Rokach L. Ensemble learning: a survey. WIREs Data Min 

Knowl 2018;8:e1249.

92. Dong J, Wu Z, Xu HL, Ouyang DF. FormulationAI: a novel web-

based platform for drug formulation design driven by artificial in-

telligence. Briefings Bioinf 2024;25:bbad419.

93. Hang NT, Long NT, Duy ND, Chien NN, Van Phuong N. 

Towards safer and efficient formulations: machine learning ap-

proaches to predict drug-excipient compatibility. Int J Pharm 2024; 
653:123884.

94. Deng JY, Ye ZYF, Zheng WW, Chen J, Gao HS, Wu Z, et al. Ma-

chine learning in accelerating microsphere formulation development. 
Drug Deliv Transl Res 2023;13:966—82.

95. Cai CJ, Wang SW, Xu YJ, Zhang WL, Tang K, Ouyang Q, et al. 

Transfer learning for drug discovery. J Med Chem 2020;63: 

8683—94.

96. Guo WB, Dong YW, Hao GF. Transfer learning empowers accurate 

pharmacokinetics prediction of small samples. Drug Discov Today 

2024;29:103946.

97. Zhang Y, Yang Q. A survey on multi-task learning. IEEE Trans 
Knowl Data Eng 2022;34:5586—609.

98. Ye ZYF, Yang YL, Li XS, Cao DS, Ouyang DF. An integrated 

transfer learning and multitask learning approach for pharmacoki-

netic parameter prediction. Mol Pharm 2019;16:533—41.

99. Wang L, Zhou ZR, Yang XX, Shi SH, Zeng XX, Cao DS. The present 

state and challenges of active learning in drug discovery. Drug 

Discov Today 2024;29:103985.

100. Rakhimbekova A, Lopukhov A, Klyachko N, Kabanov A, 

Madzhidov TI, Tropsha A. Efficient design of peptide-binding poly-

mers using active learning approaches. J Control Release 2023;353: 

903—14.

101. Wang NN, Dong J, Ouyang DF. AI-directed formulation strategy 

design initiates rational drug development. J Control Release 2025; 

378:619—36.

22 Yiyang Wu et al.

+ MODEL

Please cite this article as: Wu Yiyang et al., Artificial intelligence for drug delivery: Yesterday, today and tomorrow, Acta Pharmaceutica Sinica B, https:// 

doi.org/10.1016/j.apsb.2025.09.022

http://refhub.elsevier.com/S2211-3835(25)00622-7/sref60
http://refhub.elsevier.com/S2211-3835(25)00622-7/sref60
http://refhub.elsevier.com/S2211-3835(25)00622-7/sref60
http://refhub.elsevier.com/S2211-3835(25)00622-7/sref60
http://refhub.elsevier.com/S2211-3835(25)00622-7/sref61
http://refhub.elsevier.com/S2211-3835(25)00622-7/sref61
http://refhub.elsevier.com/S2211-3835(25)00622-7/sref61
http://refhub.elsevier.com/S2211-3835(25)00622-7/sref61
http://refhub.elsevier.com/S2211-3835(25)00622-7/sref62
http://refhub.elsevier.com/S2211-3835(25)00622-7/sref62
http://refhub.elsevier.com/S2211-3835(25)00622-7/sref62
http://refhub.elsevier.com/S2211-3835(25)00622-7/sref63
http://refhub.elsevier.com/S2211-3835(25)00622-7/sref63
http://refhub.elsevier.com/S2211-3835(25)00622-7/sref63
http://refhub.elsevier.com/S2211-3835(25)00622-7/sref63
http://refhub.elsevier.com/S2211-3835(25)00622-7/sref64
http://refhub.elsevier.com/S2211-3835(25)00622-7/sref64
http://refhub.elsevier.com/S2211-3835(25)00622-7/sref64
http://refhub.elsevier.com/S2211-3835(25)00622-7/sref64
http://refhub.elsevier.com/S2211-3835(25)00622-7/sref65
http://refhub.elsevier.com/S2211-3835(25)00622-7/sref65
http://refhub.elsevier.com/S2211-3835(25)00622-7/sref66
http://refhub.elsevier.com/S2211-3835(25)00622-7/sref66
http://refhub.elsevier.com/S2211-3835(25)00622-7/sref66
http://refhub.elsevier.com/S2211-3835(25)00622-7/sref67
http://refhub.elsevier.com/S2211-3835(25)00622-7/sref67
http://refhub.elsevier.com/S2211-3835(25)00622-7/sref67
https://doi.org/10.1038/s43586%2D022%2D00118%2D6
http://refhub.elsevier.com/S2211-3835(25)00622-7/sref69
http://refhub.elsevier.com/S2211-3835(25)00622-7/sref69
http://refhub.elsevier.com/S2211-3835(25)00622-7/sref69
http://refhub.elsevier.com/S2211-3835(25)00622-7/sref70
http://refhub.elsevier.com/S2211-3835(25)00622-7/sref70
http://refhub.elsevier.com/S2211-3835(25)00622-7/sref71
http://refhub.elsevier.com/S2211-3835(25)00622-7/sref71
http://refhub.elsevier.com/S2211-3835(25)00622-7/sref71
http://refhub.elsevier.com/S2211-3835(25)00622-7/sref72
http://refhub.elsevier.com/S2211-3835(25)00622-7/sref72
http://refhub.elsevier.com/S2211-3835(25)00622-7/sref72
http://refhub.elsevier.com/S2211-3835(25)00622-7/sref72
http://refhub.elsevier.com/S2211-3835(25)00622-7/sref73
http://refhub.elsevier.com/S2211-3835(25)00622-7/sref73
http://refhub.elsevier.com/S2211-3835(25)00622-7/sref73
http://refhub.elsevier.com/S2211-3835(25)00622-7/sref74
http://refhub.elsevier.com/S2211-3835(25)00622-7/sref74
http://refhub.elsevier.com/S2211-3835(25)00622-7/sref74
http://refhub.elsevier.com/S2211-3835(25)00622-7/sref75
http://refhub.elsevier.com/S2211-3835(25)00622-7/sref75
http://refhub.elsevier.com/S2211-3835(25)00622-7/sref75
http://refhub.elsevier.com/S2211-3835(25)00622-7/sref76
http://refhub.elsevier.com/S2211-3835(25)00622-7/sref76
http://refhub.elsevier.com/S2211-3835(25)00622-7/sref76
http://refhub.elsevier.com/S2211-3835(25)00622-7/sref76
http://refhub.elsevier.com/S2211-3835(25)00622-7/sref77
http://refhub.elsevier.com/S2211-3835(25)00622-7/sref77
http://refhub.elsevier.com/S2211-3835(25)00622-7/sref77
http://refhub.elsevier.com/S2211-3835(25)00622-7/sref77
http://refhub.elsevier.com/S2211-3835(25)00622-7/sref78
http://refhub.elsevier.com/S2211-3835(25)00622-7/sref78
http://refhub.elsevier.com/S2211-3835(25)00622-7/sref78
http://refhub.elsevier.com/S2211-3835(25)00622-7/sref79
http://refhub.elsevier.com/S2211-3835(25)00622-7/sref79
http://refhub.elsevier.com/S2211-3835(25)00622-7/sref80
http://refhub.elsevier.com/S2211-3835(25)00622-7/sref80
http://refhub.elsevier.com/S2211-3835(25)00622-7/sref81
http://refhub.elsevier.com/S2211-3835(25)00622-7/sref81
http://refhub.elsevier.com/S2211-3835(25)00622-7/sref81
http://refhub.elsevier.com/S2211-3835(25)00622-7/sref82
http://refhub.elsevier.com/S2211-3835(25)00622-7/sref82
http://refhub.elsevier.com/S2211-3835(25)00622-7/sref82
http://refhub.elsevier.com/S2211-3835(25)00622-7/sref83
http://refhub.elsevier.com/S2211-3835(25)00622-7/sref83
http://refhub.elsevier.com/S2211-3835(25)00622-7/sref83
http://refhub.elsevier.com/S2211-3835(25)00622-7/sref84
http://refhub.elsevier.com/S2211-3835(25)00622-7/sref84
http://refhub.elsevier.com/S2211-3835(25)00622-7/sref84
http://refhub.elsevier.com/S2211-3835(25)00622-7/sref85
http://refhub.elsevier.com/S2211-3835(25)00622-7/sref85
http://refhub.elsevier.com/S2211-3835(25)00622-7/sref85
http://refhub.elsevier.com/S2211-3835(25)00622-7/sref86
http://refhub.elsevier.com/S2211-3835(25)00622-7/sref86
http://refhub.elsevier.com/S2211-3835(25)00622-7/sref86
http://refhub.elsevier.com/S2211-3835(25)00622-7/sref86
http://refhub.elsevier.com/S2211-3835(25)00622-7/sref87
http://refhub.elsevier.com/S2211-3835(25)00622-7/sref87
http://refhub.elsevier.com/S2211-3835(25)00622-7/sref87
http://refhub.elsevier.com/S2211-3835(25)00622-7/sref87
http://refhub.elsevier.com/S2211-3835(25)00622-7/sref88
http://refhub.elsevier.com/S2211-3835(25)00622-7/sref88
http://refhub.elsevier.com/S2211-3835(25)00622-7/sref88
http://refhub.elsevier.com/S2211-3835(25)00622-7/sref88
http://refhub.elsevier.com/S2211-3835(25)00622-7/sref89
http://refhub.elsevier.com/S2211-3835(25)00622-7/sref89
http://refhub.elsevier.com/S2211-3835(25)00622-7/sref89
http://refhub.elsevier.com/S2211-3835(25)00622-7/sref90
http://refhub.elsevier.com/S2211-3835(25)00622-7/sref90
http://refhub.elsevier.com/S2211-3835(25)00622-7/sref90
http://refhub.elsevier.com/S2211-3835(25)00622-7/sref90
http://refhub.elsevier.com/S2211-3835(25)00622-7/sref91
http://refhub.elsevier.com/S2211-3835(25)00622-7/sref91
http://refhub.elsevier.com/S2211-3835(25)00622-7/sref92
http://refhub.elsevier.com/S2211-3835(25)00622-7/sref92
http://refhub.elsevier.com/S2211-3835(25)00622-7/sref92
http://refhub.elsevier.com/S2211-3835(25)00622-7/sref93
http://refhub.elsevier.com/S2211-3835(25)00622-7/sref93
http://refhub.elsevier.com/S2211-3835(25)00622-7/sref93
http://refhub.elsevier.com/S2211-3835(25)00622-7/sref93
http://refhub.elsevier.com/S2211-3835(25)00622-7/sref94
http://refhub.elsevier.com/S2211-3835(25)00622-7/sref94
http://refhub.elsevier.com/S2211-3835(25)00622-7/sref94
http://refhub.elsevier.com/S2211-3835(25)00622-7/sref95
http://refhub.elsevier.com/S2211-3835(25)00622-7/sref95
http://refhub.elsevier.com/S2211-3835(25)00622-7/sref95
http://refhub.elsevier.com/S2211-3835(25)00622-7/sref96
http://refhub.elsevier.com/S2211-3835(25)00622-7/sref96
http://refhub.elsevier.com/S2211-3835(25)00622-7/sref96
http://refhub.elsevier.com/S2211-3835(25)00622-7/sref97
http://refhub.elsevier.com/S2211-3835(25)00622-7/sref97
http://refhub.elsevier.com/S2211-3835(25)00622-7/sref98
http://refhub.elsevier.com/S2211-3835(25)00622-7/sref98
http://refhub.elsevier.com/S2211-3835(25)00622-7/sref98
http://refhub.elsevier.com/S2211-3835(25)00622-7/sref99
http://refhub.elsevier.com/S2211-3835(25)00622-7/sref99
http://refhub.elsevier.com/S2211-3835(25)00622-7/sref99
http://refhub.elsevier.com/S2211-3835(25)00622-7/sref100
http://refhub.elsevier.com/S2211-3835(25)00622-7/sref100
http://refhub.elsevier.com/S2211-3835(25)00622-7/sref100
http://refhub.elsevier.com/S2211-3835(25)00622-7/sref100
http://refhub.elsevier.com/S2211-3835(25)00622-7/sref101
http://refhub.elsevier.com/S2211-3835(25)00622-7/sref101
http://refhub.elsevier.com/S2211-3835(25)00622-7/sref101


102. Wang NN, Wang W, Zhong H, Ouyang DF. Introduction to compu-

tational pharmaceutics. In: Ouyang DF, editor. Exploring computa-

tional pharmaceutics—AI and modeling in Pharma 4.0. Hoboken: 

John Wiley & Sons; 2024. p. 1—9.

103. Sano S, Kadowaki T, Tsuda K, Kimura S. Application of Bayesian 
optimization for pharmaceutical product development. J Pharm 

Innov 2020;15:333—43.

104. Arulkumaran K, Deisenroth MP, Brundage M, Bharath AA. Deep 
reinforcement learning: a brief survey. IEEE Signal Process Mag 

2017;34:26—38.

105. Chen L, Zhang YW, Zhang SC. Optimal drug dosage control strategy 

of immune systems using reinforcement learning. IEEE Access 2023; 
11:1269—79.

106. Padmanabhan R, Meskin N, Haddad WM. Optimal adaptive control 

of drug dosing using integral reinforcement learning. Math Biosci 

2019;309:131—42.

107. Tabrizi SPHP, Reza A, Jameii SM. Enhanced path planning for 

automated nanites drug delivery based on reinforcement learning and 

polymorphic improved ant colony optimization. J Supercomput 
2021;77:6714—33.

108. Kim JW, Park BJ, Oh TH, Lee JM. Model-based reinforcement 

learning and predictive control for two-stage optimal control of fed-

batch bioreactor. Comput Chem Eng 2021;154:107465.

109. van der Merwe J, Steenekamp J, Steyn D, Hamman J. The 

role of functional excipients in solid oral dosage forms to 

overcome poor drug dissolution and bioavailability. Pharmaceutics 

2020;12:393.

110. Wang W, Chen KP, Jiang T, Wu YY, Wu Z, Ying H, et al. Artificial 

intelligence-driven rational design of ionizable lipids for mRNA 

delivery. Nat Commun 2024;15:10804.

111. Li BW, Raji IO, Gordon AGR, Sun LZ, Raimondo TM, 

Oladimeji FA, et al. Accelerating ionizable lipid discovery for 

mRNA delivery using machine learning and combinatorial chemistry. 

Nat Mater 2024;23:1002—8.

112. Witten J, Raji I, Manan RS, Beyer E, Bartlett S, Tang YH, et al. 

Artificial intelligence-guided design of lipid nanoparticles for pul-

monary gene therapy. Nat Biotechnol 2024. https://doi. 

org/10.1038/s41587-024-02490-y.

113. Bae SH, Choi H, Lee J, Kang MH, Ahn SH, Lee YS, et al. Rational 

design of lipid nanoparticles for enhanced mRNA vaccine delivery 

via machine learning. Small 2025;21:e2405618.

114. Goodfellow IJ, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, 
Ozair S, et al. Generative adversarial nets. Proceedings of the 28th 

International Conference on Neural Information Processing Systems 

2014;2:2672—80. Cambridge: MIT Press.

115. Kingma DP, Welling M. An introduction to variational autoencoders. 

Found Trends Mach Learn 2019;12:307—92.

116. Yang L, Zhang ZL, Song Y, Hong SD, Xu R, Zhao Y, et al. Diffusion 

models: a comprehensive survey of methods and applications. ACM 
Comput Surv 2023;56:1—39.

117. Liu YX, Xu CC, Yang XY, Zhang YM, Chen YD, Liu HC. Appli-

cation progress of deep generative models in de novo drug design. 

Mol Divers 2024;28:2411—27.

118. Sanchez-Lengeling B, Aspuru-Guzik A. Inverse molecular design 

using machine learning: generative models for matter engineering. 

Science 2018;361:360—5.

119. Tong XC, Liu XH, Tan XQ, Li XT, Jiang JX, Xiong ZP, et al. 

Generative models for de novo drug design. J Med Chem 2021;64: 

14011—27.

120. McDonald SM, Augustine EK, Lanners Q, Rudin C, Catherine 
Brinson L, Becker ML. Applied machine learning as a driver for 

polymeric biomaterials design. Nat Commun 2023;14:4838.

121. Bhowmik D, Zhang P, Fox Z, Irle S, Gounley J. Enhancing molecular 

design efficiency: uniting language models and generative networks 
with genetic algorithms. Patterns 2024;5:100947.

122. Yue TL, Tao L, Varshney V, Li Y. Benchmarking study of deep 

generative models for inverse polymer design. Dig Dis 2025;4: 

910—26.

123. Liu DF, Zhang YX, Dong WZ, Feng QK, Zhong SL, Dang ZM.

High-temperature polymer dielectrics designed using an invertible 

molecular graph generative model. J Chem Inf Model 2023;63: 

7669—75.

124. Elbadawi M, Li HX, Sun SY, Alkahtani ME, Basit AW, Gaisford S.

Artificial intelligence generates novel 3D printing formulations. Appl 

Mater Today 2024;36:102061.

125. Korshunova M, Huang N, Capuzzi S, Radchenko DS, Savych O,

Moroz YS, et al. Generative and reinforcement learning approaches 

for the automated de novo design of bioactive compounds. Commun 

Chem 2022;5:1—11.

126. Dong J, Gao HL, Ouyang DF. PharmSD: a novel AI-based compu-

tational platform for solid dispersion formulation design. Int J Pharm 

2021;604:120705.

127. Wu Z, Wang NN, Ye ZYF, Xu HL, Chan G, Ouyang DF. For-

mulationBCS: a machine learning platform based on diverse mo-

lecular representations for biopharmaceutical classification system 

(BCS) class prediction. Mol Pharm 2025;22:330—42.

128. Wang NN, Zhang YS, Wang W, Ye ZYF, Chen HY, Hu GH, et al.

How can machine learning and multiscale modeling benefit ocular 

drug development?. Adv Drug Deliv Rev 2023;196:114772.

129. Alsharef A, Aggarwal K, Sonia Kumar M, Mishra A. Review of ML

and AutoML solutions to forecast time-series data. Arch Comput 
Methods Eng 2022;29:5297—311.

130. Han R, Xiong H, Ye ZYF, Yang YL, Huang TH, Jing QF, et al.

Predicting physical stability of solid dispersions by machine learning 

techniques. J Control Release 2019;311—312:16—25.

131. Swain MC, Cole JM. ChemDataExtractor: a toolkit for automated

extraction of chemical information from the scientific literature. J 

Chem Inf Model 2016;56:1894—904.

132. Mavra�ci�c J, Court CJ, Isazawa T, Elliott SR, Cole JM. Chem-

DataExtractor 2.0: autopopulated ontologies for materials science. J 

Chem Inf Model 2021;61:4280—9.
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